
www.it-ebooks.info

http://www.it-ebooks.info/

FreeSWITCH
Cookbook

Over 40 recipes to help you get the most out of your
FreeSWITCH server

Anthony Minessale

Michael S Collins

Darren Schreiber

Raymond Chandler

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

FreeSWITCH Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1160212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-540-5

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Anthony Minessale

Michael S Collins

Darren Schreiber

Raymond Chandler

Reviewers
Jonathan Augenstine

Eric Z. Beard

Hugh Irvine

Acquisition Editor
Usha Iyer

Lead Technical Editor
Hithesh Uchil

Technical Editors
Vanjeet D'souza

Prasad Dalvi

Copy Editor
Leonard D'Silva

Project Coordinator
Joel Goveya

Proofreader
Matthew Humphries

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Anthony Minessale has been working with computers for nearly 30 years. He is the
primary author of FreeSWITCH and Director of Engineering at Barracuda Networks. Anthony
created and continues to run the ClueCon Telephony Developers Conference held every
August in Chicago.

Anthony has extensive experience in the Internet industry and VoIP. He has contributed heavily
to the Asterisk open source project producing many features that are still in use today. At
Barracuda Networks, Anthony oversees the production and development of the CudaTEL PBX
appliance that uses FreeSWITCH as its core telephony engine. This is Anthony's second book;
he has also co-authored the FreeSWITCH 1.0.6 book published by Packt Publishing.

I would like to thank my awesome family: my wife Jill, son Eric, and daughter
Abbi, for putting up with the long hours and supporting me on my cause
to revolutionize the telephony industry. I would also like to thank the open
source community at large especially those involved in the FreeSWITCH
project and I hope to see you all every summer at ClueCon!

www.it-ebooks.info

http://www.it-ebooks.info/

Michael S. Collins is a telephony and open source software enthusiast. He is a PBX
veteran, having worked as a PBX technician for five years and as the head of IT for a call
center for more than nine years. Michael is an active member of the FreeSWITCH community
and has co-authored Packt Publishing's FreeSWITCH 1.0.6. He resides in Central California
with his wife and two children and currently works for Barracuda Networks, Inc.

I would like to thank first and foremost my wife, Lisa, my daughter Katherine
and my son, Sean, who keep me going each day. I would also like to thank
the many FreeSWITCH experts around the world who are so willing to answer
technical questions: Michael Jerris, Moises Silva, Raymond Chandler,
Mathieu René, Ken Rice, and many more. I would especially like to thank
Brian K. West for patiently educating me in the ways of VoIP.

Finally, I give my continued thanks to Anthony Minessale. In addition to
authoring an amazing piece of software he has graciously let me work
closely with the very talented core FreeSWITCH development team.

www.it-ebooks.info

http://www.it-ebooks.info/

Darren Schreiber is the CEO and Co-Founder of 2600hz. He began working heavily in
open source voice with the FreeSWITCH project, where he engaged with Brian, Mike, and
Anthony. His projects have since evolved into two enterprise VoIP platforms that allow a
multitude of development of voice, SMS, and video applications to be delivered to customers.
Darren's 15 years of voice and IT experience include developing multiple enterprise SaaS
infrastructures for hosting and remotely managing IT, voice, and e-commerce services. Darren
is a guest lecturer at major universities on VoIP technology and leads paid international VoIP
trainings. As a serious telephony enthusiast since a young age, he has worked extensively with
VoIP technologies. Darren graduated from Rensselaer Polytechnic Institute with a degree in
Computer Science and Business Management.

Darren is also a co-author on the original FreeSWITCH Telephony Book.

I'd like to thank, first and foremost, the FreeSWITCH team. Without them, I
wouldn't have been challenged with some of the most intriguing technology
and people I've ever worked with. It has been a gift working with them.

I'd also like to thank my family and friends who have put up with my crazy
work schedule and constant tardiness, and have helped provide funds and
morale support for our work. Specifically my parents who demand a check-in
on how things are going at least once a week. Thanks for everything.

Finally, I'd like to thank the open source community. Their tireless patience
and countless selfless contributions are a constant reminder that the world
is not an evil place, and that people are generally out for the greater good of
society.

www.it-ebooks.info

http://www.it-ebooks.info/

Raymond Chandler (@intralanman) has been working with, and contributing to,
open source projects for over a decade. Raymond's VoIP experience started with a small
CLEC/ITSP using SER for call routing, and Asterisk for voicemail and advanced services. After
encountering limits in Asterisk and looking for features not easily found in SER, he moved to
using OpenSER and CallWeaver (then known as OpenPBX.org). While that combination was
better, Raymond still had not found his perfect solution.

In 2006, Raymond was introduced to FreeSWITCH. Since then, he's been using FreeSWITCH
and regularly contributing to the community. Raymond is the author of mod_lcr and several
utility PHP/perl scripts. Raymond now works with Anthony Minessale as a CudaTel Software
Engineer at Barracuda Networks (@CudaTel and @BarracudaLabs).

In the spring of 2011, Raymond was among the founding members of the Open Source
Telephony Advancement Group (@OSTAG), whose mission is to advance open source
telephony to new heights by funding open source projects through funds received by generous
contributions and grants from those who share the OSTAG vision.

I'd like to thank my loving wife, Samantha, and our children for their support
while they get less time with me than any of us would like.

I'd also like to thank the countless volunteers that step up to help out in
the FreeSWITCH and other open source project communities. It would be
impossible to keep any project running without them.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Jonathan Augenstine, Telephony Systems Development and Operations.

After graduating from college in 1982, Jonathan spent 12 years working in the analytical
instrumentation field developing and deploying equipment into electronics and disk drive
analysis applications. He worked in applications, engineering, and software development, and
as product manager on the team that developed custom wafer monitoring equipment that was
incorporated into wafer fabs for Intel, DEC, and IBM.

The next 18 years saw Jonathan take a new career path. After leaving the analytical
equipment business, he moved into software development in the telecommunications
market developing firmware for computer based telephony hardware at Dialogic, a telephony
hardware manufacturer. He led the software development team tasked with migrating the
system software and firmware from Unix on to the Windows NT platform.

Through various employment and consulting positions following his experience at Dialogic,
including positions such as VP of Engineering and Network Operations, Jonathan has been
instrumental in developing and managing operations of services that have integrated the
POTS network with next generation Internet enabled applications. These projects included
developing and deploying an international conferencing application with local access on
four continents that integrated with radio stations streaming on the Internet. Participated
in integrating SS7 capability with database locating services to enable E911 services on
the mobile phone network. Other projects included development and operations of fax,
conferencing, and IVR services that were deployed by companies such as WorldCom, Qwest,
and J2 Global Communications in domestic and international markets that scaled into high
volume usage.

The most recent project that Jonathan has pursued is the design and development of new
technology that facilitates connecting directly to the voice-mail platform.

www.it-ebooks.info

http://www.it-ebooks.info/

Eric Z. Beard is the Chief Technical Officer at AutoLoop, a company that provides
communications and marketing software to the automotive industry. He has more than
ten years experience as a software consultant and development team leader, working
at companies such as Brainbench, British Telecom, AT&T, and America Online. He uses
FreeSWITCH as a part of an outbound IVR system in combination with Microsoft Speech
Server to make customer service calls for auto dealerships.

Hugh Irvine lives in Australia and is the founder and past President of the Internet Society
of Australia as well as the founding Co-Director of APNIC in Australia.

He has over 30 years experience in computing and network engineering. His principle area
of expertise is in Internet engineering and operation. He has worked for many companies
throughout Canada, France, and Australia. He is currently an independent consultant.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Routing Calls 5

Introduction 5
Internal calls 8
Incoming DID calls 10
Outgoing calls 11
Ringing multiple endpoints simultaneously 13
Ringing multiple endpoints sequentially (simple failover) 15
Advanced multiple endpoint calling with enterprise originate 19
Time of day routing 22
Manipulating To: headers on registered endpoints to reflect DID numbers 26

Chapter 2: Connecting Telephones and Service Providers 29
Introduction 29
Configuring a SIP phone to register with FreeSWITCH 30
Connecting audio devices with PortAudio 33
Using FreeSWITCH as a softphone 36
Configuring a SIP gateway 38
Configuring Google Voice 42
Codec configuration 43

Chapter 3: Processing Call Detail Records 47
Introduction 47
Using CSV CDRs 47
Using XML CDRs 51
Inserting CDRs into a backend database 53
Using a web server to handle XML CDRs 56
Using the event socket to handle CDRs 59

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 4: External Control 63
Introduction 63
Getting familiar with the fs_cli interface 64
Setting up the event socket library 68
Establishing an inbound event socket connection 69
Establishing an outbound event socket connection 72
Using fs_ivrd to manage outbound connections 76
Filtering events 79
Launching a call with an inbound event socket connection 81
Using the ESL connection object for call control 86
Using the built-in web interface 89

Chapter 5: PBX Functionality 93
Introduction 93
Creating users 94
Accessing voicemail 96
Company directory 98
Using phrase macros to build sound prompts 100
Creating XML IVR menus 103
Music on hold 107
Creating conferences 110
Sending faxes 112
Receiving faxes 115
Basic text-to-speech with mod_flite 118
Advanced text-to-speech with mod_tts_commandline 120
Listening to live calls with telecast 124
Recording calls 125

Index 129

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
"Now what?"

That was the question that Anthony Minessale, Darren Schreiber, and Michael Collins
asked themselves after the successful release of Packt Publishing's first FreeSWITCH book:
FreeSWITCH 1.0.6. They were all tired from writing a book while still maintaining their day
jobs and attempting to have a life outside of work. However, all felt a sense of pride and
accomplishment at having released the first published book about FreeSWITCH. None wanted
to lose the momentum.

It was decided that another book would be a good goal; but what kind of book? After kicking
around a few ideas amongst themselves and members of the FreeSWITCH community, it was
decided that a cookbook style publication would be a welcome addition. Packt Publishing
agreed. Eventually it was decided that the most economical approach would be to focus on
five basic subjects that are common to most FreeSWITCH installations.

What this book covers
Chapter 1, Routing Calls; getting calls from one endpoint to another is the primary function of
FreeSWITCH. This chapter discusses techniques for efficiently routing calls between phones
and service providers.

Chapter 2, Connecting Telephones and Service Providers; telephones and service providers
have specific requirements for connecting to FreeSWITCH. This chapter will assist in quickly
getting your FreeSWITCH server connected to other VoIP devices.

Chapter 3, Processing Call Detail Records; Call Detail Records, or CDRs, are very important
for businesses. This chapter discusses a number of ways to extract CDR data from your
FreeSWITCH server.

Chapter 4, External Control; FreeSWITCH can be controlled externally by the powerful and
versatile event socket interface. This chapter presents a number of real-world examples of
controlling FreeSWITCH from an external process.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Chapter 5, PBX Functionality; most telephone systems have common features like voicemail,
conference calls, faxing, IVRs, and more. The final and largest chapter in the book, shows how
to employ all of these features in a FreeSWITCH server.

Who this book is for
FreeSWITCH Cookbook is written for anyone who wants to learn more about using FreeSWITCH
in production. By necessity some of the information contained herein overlaps with what is
presented in FreeSWITCH 1.0.6. However, the information is presented in such a way that you
can get up and running quickly. The cookbook approach eschews much of the foundational
concepts and focuses instead on discrete examples that illustrate specific features. If you
need to implement a particular feature as quickly as possible then this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Many of the techniques employed in the
Local_Extension are discussed in this chapter."

A block of code is set as follows:

<include>
 <extension name="public_did">
 <condition field="destination_number"
 expression="^(8005551212)$">
 <action application="set" data="domain_name=$${domain}"/>
 <action application="transfer" data="1000 XML default"/>
 </condition>
 </extension>
</include>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<include>
 <extension name="public_did">
 <condition field="destination_number"
 expression="^(8005551212)$">
 <action application="set" data="domain_name=$${domain}"/>
 <action application="transfer" data="1000 XML default"/>
 </condition>
 </extension>
</include>

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

Any command-line input or output is written as follows:

perl -MCPAN -e 'install Regexp::Assemble'

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "You should see an application
named directory in the list."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book? See our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

4

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

1
Routing Calls

In this chapter, we will discuss routing calls in various scenarios:

 f Internal calls

 f Incoming DID calls

 f Outgoing calls

 f Ringing multiple endpoints simultaneously

 f Ringing multiple endpoints sequentially (simple failover)

 f Advanced multiple endpoint calling with enterprise originate

 f Time of day routing

 f Manipulating To: headers on registered endpoints to reflect DID numbers

Introduction
Routing calls is at the core of any FreeSWITCH server. There are many techniques for
accomplishing the surprisingly complex task of connecting one phone to another. However, it
is important to make sure that you have the basic tools necessary to complete this task.

The most basic component of routing calls is the dialplan, which is essentially a list of actions
to perform depending upon what digits were dialed (as we will see in some of the recipes in
this book, there are other factors that can affect the routing of calls). The dialplan is broken
up into one or more contexts. Each context is a group of one or more extensions. Finally,
each extension contains specific actions that can be performed on the call. The dialplan
processor uses regular expressions, which is a pattern-matching system, to determine which
extensions and actions to execute.

To make the best use of the recipes in this chapter, it is especially important to understand
how to use regular expressions and the three contexts in the default configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

6

Regular expressions
FreeSWITCH uses Perl-compatible regular expressions (PCRE) for pattern matching.
Consider this dialplan excerpt:

<extension name="example">
 <condition field="destination_number" expression="^(10\d\d)$">
 <action application="log" data="INFO dialed number is [$1]"/>

This example demonstrates the most common uses of regular expressions in the dialplan:
matching against the destination_number field (that is, the digits that the user dialed) and
capturing the matched value in a special variable named $1. Let's say that a user dials 1025;
our example extension would match 1025 against the pattern ^(10\d\d)$ and determine
that this is indeed a match. All actions inside the condition tag would be executed. The
action in our example would execute the log application. The log application will then print
a message to the console, using the INFO log level, which, by default, will be in green text. The
value in $1 is expanded (or interpolated) when printed out:

2011-01-09 13:38:31.864281 [INFO] mod_dptools.c:1152 dialed number is [1025]

Understanding these basic principles will enable you to create effective dialplan extensions.
For more tips on using regular expressions, be sure to visit http://wiki.freeswitch.
org/wiki/Regex.

Important dialplan contexts in the default
configuration

As previously mentioned, contexts are logical groups of extensions. The default FreeSWITCH
configuration contains three contexts:

 f default

 f public

 f features

Each of these contexts serves a purpose, and knowing about them will help you leverage their
value for your needs.

The default context
The most-used context in the default configuration is the default context. All users whose
calls are authenticated by FreeSWITCH will have their calls pass through this context, unless
there have been modifications. Some common modifications include using ACLs or disabling
authentication altogether (see The public context section that follows). The default context
can be thought of as "internal" in nature, that is, it services the users who are connected
directly to the FreeSWITCH server, as opposed to outside callers. (again, see The public
context section that follows).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

7

Many of the PBX-related (Private Branch Exchange) features are defined in the default
context, as are various utility extensions. It is good to open conf/dialplan/default.
xml and study the extensions in there. Start with simple extensions like show_info, which
performs a simple info dump to the console, and vmain, which allows a user to log into
his/her voicemail box.

A particularly useful extension to review is the Local_Extension. This extension does
many things:

 f Routes calls between internal users
 f Sends calls to the destination user's voicemail on a no answer condition
 f Enables several in-call features with bind_meta_app
 f Updates the local calls database to allow for a call return and call pickup

Many of the techniques employed in the Local_Extension are discussed in this chapter
(see also The features context below for a discussion of the in-call features found in
this extension).

The public context
The public context is used to route incoming calls that originate from outside the local network.
Calls that initially come in to the public context and are treated as untrusted—if they are not
specifically routed to an extension in the default context, then they are simply disconnected.
As mentioned above, disabling authentication or using ACLs to let calls into the system will route
them into the public context (this is a security precaution that can be overridden if absolutely
required). We will use the public context in the recipe Incoming DID calls.

The features context
The features context is used to expose certain features for calls that are in progress.
Consider this excerpt from the Local_Extension in conf/dialplan/default.xml:

<action application="bind_meta_app" data="1 b s
execute_extension::dx XML features"/>

This is just one of several features that are enabled for the recipient of the call. The bind_
meta_app application listens on the audio stream for a touch-tone * followed by a single digit.
The above example is a blind transfer. If the user dials *1, then the command execute_
extension::dx XML features is executed. In plain language, this command says, "Go
to the features context of the XML dialplan and execute the extension whose destination
number is dx". In conf/dialplan/features.xml is the following extension:

<extension name="dx">
 <condition field="destination_number" expression="^dx$">
 ...

The dx extension accepts some digits from the user and then transfers the caller to the
destination that the user keyed in.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

8

This process demonstrates several key points:

 f Calls can be transferred from one dialplan context to another

 f The features context logically isolates several extensions that supply
in-call features

 f The bind_meta_app dialplan application is one of the means of allowing
in-call features

Understanding that calls can flow from one context to another, even after they are in progress,
is an important concept to grasp when addressing your call routing scenarios.

Internal calls
Calling local extensions is very simple once you know what needs to happen. In this case, we
will review how to add a new user and make his or her phone available to be called.

Getting ready
If you are using the default configuration, then users 1000 through 1019 are pre-configured,
both in the directory and the dialplan. To create a user outside this range, it is generally
easiest to just run the add_user script, found in the FreeSWITCH source directory under
scripts/perl. For example, to add the user 1020, launch this script from the FreeSWITCH
source directory, specifying the user ID on the command line:

scripts/perl/add_user 1020

You can also specify a range of users:

scripts/perl/add_user –-users=1020-1029

You will see a note about how many users were added. If you have the CPAN module
Regexp::Assembly installed, then the script will also generate a 'sample regular expression
pattern'. For our example, we will add a range of users 1020-1029.

How to do it...
Follow these steps:

1. Open the file conf/dialplan/default.xml in a text editor. Locate the Local_
Extension entry:
<extension name="Local_Extension">
 <condition field="destination_number
 "expression="^(10[01][09])$">
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

2. Edit the expression in the <condition> tag to account for our new users. The
expression pattern ^(10[012][0-9])$ will do what we need (look closely to see
the difference). The new line will be as follows:
<condition field="destination_number" expression="^(10[012]
[09])$">

3. Save the file and then execute reloadxml from the fs_cli.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
The Local_Extension is the default dialplan entry that allows directory users to be called.
Remember, simply adding a user to the directory does not mean that the user can be dialed.
(It does, though, usually mean that the user can make outbound calls.) So in order for your
new user to be reachable, you need to add his or her user ID to the dialplan. By default,
Local_Extension has a regular expression that will match 1000, 1001, … 1019. When
adding users outside that number range, it is necessary to modify the regular expression to
account for those new numbers. In our example, we added user IDs 1020 through 1029, so
we need to match those. We use this regular expression:

^(10[012][0-9])$

This matches 1000 through 1029. Let's say we added another block of user IDs with the
range of 1030 through 1039. We could modify our regular expression to catch those as well:

^(10[0123][0-9])$

It is considered a best practice not to add a large range of dialable numbers in the Local_
Extension without having the corresponding users in the directory. Doing so can make
troubleshooting dialplan issues more difficult.

As a reminder, be sure to execute the reloadxml command each time you modify the regular
expression (the changes you make to your XML configuration files will not take effect until they
are loaded into memory, which is what reloadxml command does).

See also
 f The Creating Users section in Chapter 5, PBX Functionality

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Routing Calls

10

Incoming DID calls
Phone calls coming in from the Public Switched Telephone Network (PSTN) are often called
DID calls. DID stands for Direct Inward Dialing. DID numbers are delivered by your telephone
service provider. They can be delivered over VoIP connections (such as a SIP trunk) or via
traditional telephone circuits like PRI lines. These phone numbers are sometimes called "DID
numbers" or "external phone numbers".

Getting ready
Routing a call requires two pieces of information—the phone number being routed and a
destination for that phone number. In our example, we will use a DID number of 8005551212.
Our destination will be user 1000. Replace these sample numbers with the appropriate values
for your setup.

How to do it...
Follow these steps:

1. Create a new file in conf/dialplan/public/ named 01_DID.xml. Add this text:
<include>
 <extension name="public_did">
 <condition field="destination_number"
 expression="^(8005551212)$">
 <action application="set" data="domain_name=$${domain}"/>
 <action application="transfer" data="1000 XML default"/>
 </condition>
 </extension>
</include>

2. Save the file and then execute reloadxml from the fs_cli.

How it works...
All calls that come in to the FreeSWITCH server from outside (as well as internal calls that are
not authenticated) are initially handled in the public dialplan context (dialplan contexts were
discussed in more detail in this chapter's introduction). Once the call hits the public context,
we try to match the destination_number field. The destination_number is generally
the DID number (see the There's more section below for some caveats). Once we match the
incoming number, we then set the domain_name channel variable to the default domain value
and then transfer the call to user 1000 (FreeSWITCH is domain-based in a way similar to e-mail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

Most systems have only a single domain, although FreeSWITCH supports multiple domains.
See the FreeSWITCH wiki for explicit information on multiple domain configuration). The
actual transfer happens with this dialplan entry:

<action application="transfer" data="1000 XML default"/>

In plain language, this tells FreeSWITCH to transfer the call to extension 1000 in the XML
dialplan and the default context. The default context contains the Local_Extension,
which handles calls to users' telephones.

There's more...
Keep in mind the match in destination_number must match what the provider sends to
FreeSWITCH, not necessarily what the calling party actually dialed. In North America, there are
providers that send DID information in various formats such as:

 f 8005551212

 f 18005551212

 f +18005551212

The expression must match what the provider sends. One way to accomplish this is to have a
few optional characters in the pattern. This pattern matches all three formats listed above:

<condition field="destination_number"
expression="^\+?1?(8005551212)$">

The value \+? means optionally match a literal + character and the value 1? means
"optionally match a literal digit 1". Now our pattern will match all three formats that are
commonly used in North America (technically, our pattern will also match +8005551212, but
we are not concerned about that. However, the pedantic admin might be, so he or she can use
the pattern ^(\+1)?1?(8005551212)$ instead).

See also
 f The Configuring a SIP gateway section in Chapter 2, Connecting Telephones and

Service Providers

Outgoing calls
In order to make your system useful, you need a way to dial out to the "real world". This section
will cover dialing out to the PSTN and allow you to connect to land lines, cellular phones, and
so on. In this recipe, we'll make an extension that will allow an outbound call to any valid US
number. We'll attempt to complete the call using the gateway named our_sip_provider.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

12

Getting ready
Making outbound calls requires you to know the numbering format that your provider requires.
For example, do they require all 11 digits for US dialing? Or will they accept 10? In our
example, we're going to assume that our provider will accept a 10-digit format for US dialing.

How to do it...
Routing outbound calls is simply a matter of creating a dialplan entry. Follow these steps:

1. Create a new file in conf/dialplan/default/ named outbound_calls.xml.
Add the following text:
<include>
 <extension name="outbound_calls">
 <condition field="destination_number"
 expression="^1?([2-9]\d{2}[2-9]\d{6})$">
 <action application="bridge "
 data="sofia/gateway/our_sip_provider/$1"/>
 </condition>
 </extension>
</include>

2. Save your XML file and press F6 or issue the reloadxml command at the fs_cli.

How it works...
Assuming you have a phone set up on the default context, our regular expression will match
any destination_number that follows the US dialing format (10 or 11 digits) and send the
call to our_sip_provider in a 10-digit format.

There's more...
The regular expression matching in FreeSWITCH allows the possibility of having very powerful
conditions. You can also match caller_id_number to route calls from a user at extension
1011 out to the second gateway called our_sip_provider2 and everyone else at the our_
sip_provider. Consider the following alternative outbound_calls.xml file:

<include>
 <extension name="outbound_calls_from_1011">
 <condition field="caller_id_number" expression="^1011$"/>
 <condition field="destination_number" expression="^1?([2-
 9]\d{2}[2-9]\d{6})$">
 <action application="bridge"
 data="sofia/gateway/our_sip_provider2/$1"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

 </condition>
 </extension>
 <extension name="outbound_calls">
 <condition field="destination_number" expression="^1?([2-
 9]\d{2}[2-9]\d{6})$">
 <action application="bridge"
 data="sofia/gateway/our_sip_provider/$1"/>
 </condition>
 </extension>
</include>

Note that we have two extensions. The first one tries to match the caller_id_number
field to the value 1011. If it matches 1011, then the call gets sent out to the our_sip_
provider2 gateway, otherwise the second extension is matched and the call goes out to
the our_sip_provider gateway. Note that we use $1 to capture the matching value in the
conditions' expressions. In each case, we capture exactly 10 digits which correspond to the
area code (three digits), exchange (three digits), and phone number (four digits). These are
North American Numbering Plan (NANPA) numbers. The regular expression used to capture
dialed digits will vary depending upon the country.

Regular expressions can be a challenge. There are a number of examples
with explanations on the FreeSWITCH wiki. See http://wiki.
freeswitch.org/wiki/Regular_Expression for further details.

See also
 f The Configuring a SIP phone to register with FreeSWITCH and Configuring a SIP

gateway sections in Chapter 2, Connecting Telephones and Service Providers

Ringing multiple endpoints simultaneously
FreeSWITCH makes it easy to ring multiple endpoints simultaneously within a single command.

Getting ready
Open conf/dialplan/default.xml in a text editor or create or edit a new XML file in the
conf/dialplan/default/ subdirectory.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

14

How to do it...
Add a comma-separated list of endpoints to your bridge (or originate) application. For
example, to ring userA@local.pbx.com and userB@local.pbx.com simultaneously,
use an extension like this:

<extension name="ring_simultaneously">
 <condition field="destination_number" expression="^(2000)$">
 <action application="bridge"
 data="{ignore_early_media=true}sofia/internal/
 userA@local.pbx.com,sofia/sip/userB@local.pbx.com"/>
 </condition>
</extension>

How it works...
Putting comma-separated endpoints in the argument to bridge causes all of the endpoints
in that list to be dialed simultaneously. It sounds simple, however, there are several factors
to consider when ringing multiple devices simultaneously in a real environment. The bridge
application will connect the call to whoever sends media first. This includes early media
(ringing). To put this another way, if you bridge a call to two parties and one party starts
sending a ringing signal back to you, that may be considered media and the call will be
connected to that party only. Ringing of the other phones will cease.

If you find that calls always go to a specific number on your list of endpoints versus ringing
all numbers, or that all phones ring for a moment before ringing only a single number, your
call may be getting bridged prematurely because of early media. Notice that we added
ignore_early_media=true at the beginning of the dial string. As its name implies,
ignore_early_media tells the bridge application not to connect the calling party to the
called party when receiving early media (such as a ringing or busy signal). Instead, bridge
will only connect the calling party to the called party who actually answers the call. In most
cases, it is useful to ignore early media when ringing multiple endpoints simultaneously.

There's more...
In some scenarios, you may also wish to ring specific devices for a limited amount of time. You
can apply the leg_timeout parameter to each leg of the bridge to specify how long to ring
each endpoint, like this:

<action application="bridge"
data="[leg_timeout=20]sofia/internal/userA@local.pbx.com,
[leg_timeout=30]sofia/sip/userB@local.pbx.com"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

In this example, userA's phone would ring for a maximum of 20 seconds while userB's phone
would ring for a maximum of 30 seconds.

Call legs and the leg_timeout variable
The leg_timeout variable is unique in that it implies the ignoring
of early media. When using the leg_timeout variable on each call
leg in a bridge attempt, there is no need to explicitly use {ignore_
early_media=true} in the bridge argument. For a more complete
discussion of using { and } (curly braces) versus [and] (square
brackets), see http://wiki.freeswitch.org/wiki/Channel_
Variables#Channel_Variables_in_Dial_strings.

This method of calling multiple parties works well for small numbers of endpoints. However, it
does not scale to dozens or more users. Consider using a FIFO queue in such an environment
(FreeSWITCH's mod_fifo is discussed at length online at http://wiki.freeswitch.
org/wiki/Mod_fifo). See also Ringing multiple endpoints sequentially (simple failover)
for an example of ringing a group of endpoints one at a time, which includes an expanded
discussion of using call timeouts.

See also
 f The Ringing multiple endpoints sequentially (simple failover) section that follows

Ringing multiple endpoints sequentially
(simple failover)

Sometimes it is necessary to ring additional endpoints, but only if the first endpoint fails to
connect. The FreeSWITCH XML dialplan makes this very simple.

Getting ready
Open conf/dialplan/default.xml in a text editor or create or edit a new XML file in the
conf/dialplan/default/ subdirectory.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

16

How to do it...
Add a pipe-separated list of endpoints to your bridge (or originate) application. For
example, to ring userA@local.pbx.com and userB@local.pbx.com sequentially, use an
extension like this:

<extension name="ring_sequentially">
 <condition field="destination_number" expression="^(2001)$">
 <action application="bridge"
 data="{ignore_early_media=true}sofia/internal/
 userA@local.pbx.com|sofia/sip/userB@local.pbx.com"/>
 </condition>
</extension>

How it works...
Putting pipe-separated endpoints in the argument to bridge causes all of the endpoints in
that list to be dialed sequentially. The first endpoint on the list that is successfully connected
will be bridged and the other endpoints will not be dialed. There are several factors to
consider when ringing multiple devices sequentially.

Notice that we added ignore_early_media=true at the beginning of the dial string. As its
name implies, ignore_early_media tells the bridge application not to connect the calling
party to the called party when receiving early media (such as a ringing or busy signal). Instead,
bridge will only connect the calling party if the called party actually answers the call. In most
cases you will need to ignore early media when dialing multiple endpoints sequentially.

There's more...
Handling various failure conditions can be a challenge. FreeSWITCH has a number of options
that lets you tailor bridge and originate to your specific requirements.

Handling busy and other failure conditions
For example, when calling a user who is on the phone, one service provider might return SIP
message 486 (USER_BUSY) whereas many providers will simply send a SIP 183 with SDP,
and a media stream with a busy signal. In the latter case, how will the bridge application
know that there is a failure if it is ignoring the early media that contains the busy signal?
FreeSWITCH gives us a tool that allows us to monitor early media even while "ignoring" it.

Consider two very common examples of failed calls where the failure condition is
signaled in-band:

 f Calling a line that is in use

 f Calling a disconnected phone number

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

These conditions are commonly communicated to the caller via specific sounds: busy signals
and special information tones, or SIT tones. In order for the early media to be meaningful, we
need to be able to listen for specific tones or frequencies. Additionally, we need to be able
to specify that certain frequencies mean different kinds of failure conditions (this becomes
important for reporting, as in call detail records or CDRs). The tool that FreeSWITCH provides
us is a special channel variable called monitor_early_media_fail. Its use is best
illustrated with an example:

<action application="bridge" data="{ignore_early_media=true,
monitor_early_media_fail=user_busy:2:480+620!
destination_out_of_order:2:1776.7}sofia/internal/
userA@local.pbx.com|sofia/sip/userB@local.pbx.com"/>

Here we have a bridge application that ignores early media and that sets two failure
conditions, one for busy and one for destination out of order. We specify the name of the
condition we are checking, the number of hits, and the frequencies to detect. The format for
monitor_early_media_fail is:

condition_name:number_of_hits:tone_detect_frequencies

The user_busy condition is defined as user_busy:2:480+620. This condition looks for
both 480 Hz and 620 Hz frequencies (which is the U.S. busy signal) and if they are detected
twice, then the call will fail. The exclamation point (!) is the delimiter between conditions. The
destination_out_of_order condition is defined as:

destination_out_of_order:2:1776.7.

This looks for two occurrences of 1776.7 Hz, which is a common SIT tone frequency in the
U.S (there is a nice introductory article on SIT tones at http://en.wikipedia.org/
wiki/Special_information_tones). If 1776.7 Hz is heard twice, then the call will fail as
destination out of order.

When using monitor_early_media_fail, only the designated frequencies are detected.
All other tones and frequencies are ignored.

Handling no answer conditions
Handling a no answer condition is different from busy and other in-band errors. In some
cases, the service provider will send back a SIP message 480 (NO_ANSWER) whereas others
will send a ringing signal in the early media until the caller decides to hang up. The former
scenario is handled automatically by the bridge application. The latter can be customized
with the use of special timeout variables:

 f call_timeout: Sets the call timeout for all legs when using bridge

 f originate_timeout: Sets the call timeout for all legs when using originate

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

18

 f leg_timeout: Sets a different timeout value for each leg

 f originate_continue_on_timeout: Specifies whether or not the entire bridge
or originate operation should fail if a single call leg times out

By default, each call leg has a timeout of 60 seconds and bridge/originate will stop after
any leg times out. The three timeout variables allow you to customize the timeout settings
for the various call legs. Use call_timeout when using the bridge application and use
originate_timeout when using the originate API. Use leg_timeout if you wish to
have a different timeout value for each dialstring. In that case, use the [leg_timeout=###]
notation for each dialstring:

<action application="bridge" data="[leg_timeout=10]sofia/internal/
userA@host|[leg_timeout=15]sofia/internal/userB@host"/>

Use originate_continue_on_timeout to force bridge or originate to continue
dialing even if one of the endpoints fails with a timeout:

<action application="bridge"
data="{originate_continue_on_timeout=true}[leg_timeout=10]
sofia/internal/userA@host|[leg_timeout=15]sofia/internal/
userB@host"/>

Keep in mind that, by default, a timeout (that is, a no answer) will end the entire bridge or
originate if you do not set originate_continue_on_timeout to true.

One other thing to keep in mind is handling cases where you are calling a phone number that
has voicemail. For example, if you are trying to implement a type of "find me, follow me" and
one of the numbers being called is a mobile phone with voicemail, you need to decide if you
want that phone's voicemail to answer your call. If it does answer, then the bridge will be
completed. If you do not want to have the voicemail answer and end the bridge (so that your
bridge will keep dialing the other endpoints), then be sure to set the leg_timeout to a
relatively low value. If the voicemail picks up after 15 seconds, then you may wish to set leg_
timeout=12. In most cases, you will need to make several test calls to find the best timeout
values for your various endpoints.

Using individual bridge calls
In some cases, you may find that it is helpful to make a dial attempt to a single endpoint and
then do some processing prior to dialing the next endpoint. In these cases, the pipe-separated
list of endpoints will not suffice. However, the FreeSWITCH XML dialplan allows you to do this
in another way. Consider this excerpt:

<extension name="ring_sequentially">
 <condition field="destination_number" expression="^(2001)$">
 <action application="set" data="continue_on_fail=true"/>

 <action application="set" data="hangup_after_bridge=true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

 <action application="bridge" data={ignore_early_media=true}
 sofia/internal/userA@local.pbx.com"/>
 <action application="log" data="INFO call to userA failed."/>
 <action application="bridge" data={ignore_early_media=true}
 sofia/internal/userB@local.pbx.com"/>
 <action application="log" data="INFO call to userB failed."/>
 </condition>
</extension>

The key to this operation is the highlighted lines. In the first one, we set continue_on_
fail to true. This channel variable tells FreeSWITCH to keep processing the actions in the
extension even if a bridge attempt fails. After each bridge attempt, you can then do some
processing. Note, too, that we set hangup_after_bridge to true. This is done so that the
dialplan does not keep processing after a successful bridge attempt. (For example, if the call
to userA was successful, we would not want to call userB after userA hung up.) You may add
as many additional bridge endpoints as needed.

See also
 f The Ringing multiple endpoints simultaneously and Advanced multiple endpoint

calling with enterprise originate sections in this chapter

Advanced multiple endpoint calling with
enterprise originate

You've seen many ways to ring multiple destinations with many options, but in some cases this
is still not good enough. Say you wanted to call two destinations at once but each of those two
destinations was a separate set of simultaneous or sequential destinations.

For instance, you want to call Bill and Susan at the same time, but Bill prefers you to try his cell
first, then try all of his landlines at the same time. Susan prefers you to call her desk first, then
her cell, and then her home. This is a complicated problem and the solution to that problem
is called enterprise originate. The term enterprise is used to indicate an increased level of
indirection, dimension, or scale. Basically, you are doing everything the originate syntax has
to offer, but you are doing entire originates in parallel in a sort-of super originate.

Getting ready
The first thing you need to do to take advantage of enterprise originate is to fully understand
the regular originate. Originate is the term used to indicate making an outbound call. Although
there is an originate command that can be used at the fs_cli, the method by which you
mostly use the originate command is with the bridge dialplan application.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

20

The bridge application versus the originate command
Why do we talk about a regular originate when discussing the
bridge application? Are not the bridge application and the
originate command completely different? No! This is a common
misconception, and it is incorrect. The bridge application is used in
the dialplan, but it does exactly the same thing that the originate
command does – it creates a new call leg. In fact, bridge and
originate use exactly the same code in the FreeSWITCH core. The
only difference between the two is where they are used. The originate
command is used at the fs_cli to create a new call leg. The bridge
application is used in the dialplan to create a new call to which an existing
call leg can be connected or bridged.

You will need to open conf/dialplan/default.xml in a text editor or create or edit a new
XML file in the conf/dialplan/default/ subdirectory.

How to do it...
The usage of enterprise originate is similar to the ring simultaneously example, but an
alternate delimiter (:_:) is used:

<extension name="enterprise_originate">
 <condition field="destination_number" expression="^(2000)$">
 <action application="bridge"
 data="{ignore_early_media=true}sofia/internal/
 userA@local.pbx.com:_:{myoption=true}sofia/sip/
 userB@local.pbx.com"/>
 </condition>
</extension>

<extension name="enterprise_originate2">
 <condition field="destination_number" expression="^(2001)$">
 <action application="bridge"
 data="{ignore_early_media=true}sofia/internal/
 userA@local.pbx.com,sofia/sip/
 userB@local.pbx.com:_:sofia/internal/
 userC@local.pbx.com,sofia/internal/userD@local.pbx.com"/>
 </condition>
</extension>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

How it works...
The entire input string is broken up into smaller strings, based on the :_: symbol.

Each of those smaller strings is fed to the regular originate engine in parallel and the first
channel to answer will be bridged to the caller. Once one endpoint answers, the rest of the
calls in the enterprise will be canceled.

There's more...
Enterprise originate has a few special aspects to consider when using it to place calls.

Setting variables
As you know, you can use the {var=val} syntax to define special variables to be set on
all channels produced by originate and [var=val] to define variables per leg in a call
with many simultaneous targets. Enterprise originate uses these as well, but remember that
each string separated by the :_: delimiter is its own self-contained instance of originate so
{var=val} becomes local only to that single originate string. If you want to define variables
to be set on every channel of every originate, you must define them at the very beginning
of the string using the <var=val> notation. This indicates that you should pass these
variables to every leg inside every originate. Consider the following enterprise originate:

<action application="bridge" data="<ignore_early_media=true>
{myvar=inner1}[who=userA]sofia/internal/userA@local.pbx.com,
[who=userB]sofia/sip/userB@local.pbx.com:_:{myvar=inner2}
[who=userC]sofia/internal/userC@local.pbx.com,
[who=userD]sofia/internal/userD@local.pbx.com"/>

At first glance, this may seem confusing, but when you break it down, you can see what the
values of the variables are for each channel. This table shows the values:

Channel ${ignore_early_media} ${myvar} ${who}
userA@local.pbx.com true inner1 userA
userB@local.pbx.com true inner1 userB
userC@local.pbx.com true inner2 userC
userD@local.pbx.com true inner2 userD

Once you know which syntax to use, it becomes a simple matter to set channel variables for
individual legs, inside originates, or the entire enterprise originate.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

22

Ringback
Unlike the regular originate, signaling cannot be passed back from one of the inner originates
because there are too many call paths open to properly handle it. Therefore, when using
bridge with the enterprise originate, you must define the ringback variable if you want to
send a ring tone back to the caller.

See also
To learn more about originate and enterprise originate, look at some of the other examples
in this chapter and study the default dialplan distributed with FreeSWITCH. There are several
examples of the many things you can do when placing outbound calls found in conf/
dialplan/default.xml.

Time of day routing
It is common for routing of calls to be different, depending upon the time of day or day of the
week. The FreeSWITCH XML dialplan has a number of parameters to allow this functionality.

Getting ready
Determine the parameters for your routing. In this example, we will define business hours as
Monday through Friday, 8AM to 5PM. Additionally, we will add a day_part variable to reflect
morning (midnight to noon), afternoon (noon to 5PM), or evening (6PM to midnight).

How to do it...
Create an extension at the beginning of your dialplan by following these steps:

1. Add this extension to the beginning of your dialplan context:
<extension name="Time of day, day of week setup" continue="true">
 <condition wday="2-6" hour="8-17" break="never">
 <action application="set" data="office_status=open"
 inline="true"/>
 <anti-action application="set"
 data="office_status=closed" inline="true"/>
 </condition>
 <condition hour="0-11" break="never">
 <action application="set" data="day_part=morning"
 inline="true"/>
 </condition>
 <condition hour="12-17" break="never">
 <action application="set" data="day_part=afternoon"
 inline="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

 </condition>
 <condition hour="18-23" break="never">
 <action application="set" data="day_part=evening"
 inline="true"/>
 </condition>
</extension>

2. Later in your dialplan, you can use the variables office_status and day_part.
office_status will contain either "open" or "closed" and day_part will contain
"morning", "afternoon", or "evening". A typical usage would be to play different
greetings to the caller, depending upon whether or not the office is open. Add these
dialplan extensions, which will accomplish the task:
<extension name="tod route, x5001">
 <condition field="destination_number" expression="^(5001)$">
 <action application="execute_extension"
 data="5001_${office_status}"/>
 </condition>
</extension>
<extension name="office is open">
 <condition field="destination_number"
 expression="^(5001_open)$">
 <action application="answer"/>
 <action application="sleep" data="1000"/>
 <action application="playback" data="ivr/ivr-
 good_${day_part}.wav"/>
 <action application="sleep" data="500"/>
 <!-- play IVR for office open -->
 </condition>
 </extension>
<extension name="office is closed">
 <condition field="destination_number"
 expression="^(5001_closed)$">
 <action application="answer"/>
 <action application="sleep" data="1000"/>
 <action application="playback" data="ivr/ivr-
 good_${day_part}.wav"/>
 <action application="sleep" data="500"/>
 <!-- play IVR for office closed -->
 </condition>
</extension>

3. Save your XML file and press F6 or issue the reloadxml command at the fs_cli.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

24

How it works...
The Time of day, day of week setup extension defines two channel variables, namely,
office_status and day_part. Note the use of inline="true" in our set applications.
These allow for immediate use of the channel variables in later dialplan condition statements.
Every call that hits this dialplan context will now have these two channel variables set
(they will also show up in CDR records if you need them). You may have also noticed
continue="true" in the extension tag and break="never" in the condition tags. These
tell the dialplan parser to keep looking for more matches when it would otherwise stop doing
so. For example, without continue="true" set, when the dialplan matched one of the
conditions in the Time of day, day of week setup extension, then it would stop looking at
any more extensions in the dialplan. In a similar way, the break="never" attribute tells the
parser to keep looking for more conditions to match within the current extension (by default,
when the parser hits a failed condition, it stops processing any more conditions within the
current extension).

A detailed discussion of dialplan processing can be found in
chapters 5 and 8 of Packt Publishing's FreeSWITCH 1.0.6 book.

Our sample extension number is 5001. Note the action it takes:

<action application="execute_extension"
data="5001_${office_status}"/>

This sends the call back through the dialplan looking for a destination_number of 5001_
open or 5001_closed. We have defined both of those destinations with the extensions
"office is open" and "office is closed," respectively. Now we can play different greetings to the
caller—one for when the office is open and a different one for when the office is closed. As a
nice touch, for all calls, we play a sound file that says, "Good morning", "Good afternoon", or
"Good evening", depending on what value is in the channel variable day_part.

The execute_extension and transfer dialplan applications
These two applications both tell FreeSWITCH to execute another part
of the dialplan. The primary difference is that execute_extension
will return after executing another portion of the dialplan, whereas
a transfer sends control to the target extension. In programming
parlance, execute_extension is like a gosub command and
transfer is like a goto command. The former comes back but the
latter does not.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

There's more...
You may be wondering why we did not simply use a condition to test office_status for
the value open and then use action tags for "office open" and anti-action tags for "office
closed". There is nothing preventing us from doing this. However, what if you need to have an
office status other than "open" or "closed"? For example, what if you have an office that needs
to play a completely different greeting during lunch time? This is difficult to accomplish with
only anti-action tags, but with our example, it is almost trivial. Let's make it a bit more
challenging by adding a lunch period that runs from 11:30AM to 12:30PM. We cannot use
hour="11.5-12.5", however, we do have another value we can test—time-of-day. This
parameter lets us define periods in the day at a granularity of minutes or even seconds. The
value range is 00:00 through 23:59 or 00:00:00 through 23:59:59. Consider this new Time
of day, day of week setup snippet:

<extension name="Time of day, day of week setup" continue="true">
 <condition wday="2-6" hour="8-17" break="never">
 <action application="set" data="office_status=open"
 inline="true"/>
 <anti-action application="set" data="office_status=closed"
 inline="true"/>
 </condition>
 <condition wday="2-6" time-of-day="11:30-12:30" break="never">
 <action application="set" data="office_status=lunch"
 inline="true"/>
 </condition>

Notice that we need to explicitly define the weekend, since we cannot rely on a simple boolean
open or closed condition. However, we now have a new office_status of lunch available
to us. We define an additional extension to handle this case:

<extension name="office is at lunch">
 <condition field="destination_number"
 expression="^(5001_lunch)$">

Add the specific dialplan actions for handling calls during the office's lunch hour and you are
done. You can add as many new office statuses as you need.

See also
Refer to the XML dialplan wiki page (http://wiki.freeswitch.org/wiki/Dialplan_
XML) for more information on the usage of break, continue, and inline attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing Calls

26

Manipulating To: headers on registered
endpoints to reflect DID numbers

Sometimes, when routing calls to endpoints that are registered to your system, you want to
utilize custom To: headers. For example, if you are routing DIDs to a PBX or switch, the device
you are calling might expect the phone number you wish to reach in the To: header. However,
the customer or PBX may only have a single registration to your service that represents
multiple DIDs that need to be routed.

By default, no flags exist to change the To: header to match the DID when calling a registered
endpoint. Since the registration to your server is typically done via a generic username that
is not related to the DID, you must program your dialplan to retrieve a user's registration
information and parse out the username portion of the To: header, replacing it with your
own. Care must be taken to replace only the username portion and to keep the remaining
parameters intact, especially if NAT traversal is expected to continue operating.

Getting ready
Be sure that you have your DIDs and users configured. In this example, we will use
testuser as the username with a phone number of 4158867999 and our domain is
my.phoneco.test.

How to do it...
Create a dialplan extension, specifically for handling calls to the DID number and use some
regular expression syntax to parse out the information. Here is an example:

<extension name="call_4158867999">
 <condition field="destination_number"
 expression="^\+?1?4158867999$"/>
 <condition field="${sofia_contact(testuser@my.phoneco.test)}"
 expression="^[^\@]+(.*)">
 <action application="bridge"
 data="sofia/external/4158867999$1"/>
 </condition>
</extension>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

How it works...
You would typically make bridge calls to testuser using the bridge command with an
argument of user/testuser. In this scenario, however, you wish to call testuser's registered
endpoint but replace testuser with a phone number – 4158867999, in our example. To do
this, you must retrieve testuser's current dialstring and remove the username, replacing it with
the DID number.

In the example, we leverage the sofia_contact API and some regular expression magic.
The first condition simply matches the user's DID phone number—we only want to act if the
destination number is 4158867999. The interesting stuff happens in the second condition.
The field is ${sofia_contact(testuser@my.phoneco.test)}. By wrapping an API call
in ${}, the dialplan literally executes the API and uses the result as the field value. If we go
to fs_cli and type sofia_contact testuser@my.phoneco.test, we get the result,
which is something like this:

sofia/external/johndoe@12.34.56.7;fs_nat=yes

The regular expression pattern ^[^\@]+(.*) is applied against this value. The result
is that everything after the @ is placed in the $1 variable. In our example, $1 contains
@12.13.56.7;fs_nat=yes. Finally, we execute the bridge with the dialstring sofia/
external/4158867999$1. With $1 expanded out, our destination is as follows:

sofia/external/4158867999@12.34.56.7;fs_nat=yes

We have successfully replaced testuser with 4158867999 while preserving the necessary IP
address and parameters for contacting the server and sent the call to the proper destination.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

2
Connecting

Telephones and
Service Providers

In this chapter, we will cover:

 f Configuring a SIP phone to register with FreeSWITCH

 f Connecting audio devices with PortAudio

 f Using FreeSWITCH as a softphone

 f Configuring a SIP gateway

 f Configuring Google Voice

 f Codec configuration

Introduction
As its name implies, FreeSWITCH will "switch" or "connect" various endpoints together. Part
of that switching involves making semi-permanent connections to individual telephones or
telephone service providers. Service providers are usually telephone companies (telcos) or
ITSPs (Internet Telephony Service Providers). Read on to learn about the many ways that
FreeSWITCH can connect your telephone to the world.

The recipes in this chapter will delve into the various ways to connect FreeSWITCH to
telephones and service providers. FreeSWITCH can also utilize a locally installed sound card
by means of the PortAudio library. The last recipe is for advanced users and discusses the
subject of codec negotiation.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

30

Configuring a SIP phone to register with
FreeSWITCH

SIP phones or any SIP device with the ability to register, are essential in most FreeSWITCH
installations for allowing users to communicate with each other. A registration is when a
phone or other device informs FreeSWITCH that it is active and provides information (such
as an IP address and port) on how to reach the phone across the network or Internet.
FreeSWITCH stores this information for use later if someone wishes to contact the phone.

In this recipe, you will be registering a phone to FreeSWITCH. You will need to enter your
credentials into your phone as well as into FreeSWITCH itself (both sides must match). We will
cover only the FreeSWITCH server portion of registration in this book.

Getting ready
Ensure the mod_sofia module is already compiled and loaded (Sofia is the SIP stack).
You may also want to ensure the IP address your registrations are being accepted on for a
particular domain name.

Follow these steps:

1. Launch the FreeSWITCH command line interface.

2. To view the current ports and IPs you are listening on, type:
sofia status

3. Review the output, specifically lines listed as ALIASED:
freeswitch@internal> sofia status

Name Type Data State

==

external profile sip:mod_sofia@192.168.0.100:5080 RUNNING (0)

my.company.com alias internal ALIASED

internal profile sip:mod_sofia@127.0.0.1:5060 RUNNING (0)

==

2 profiles 1 aliases

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

31

The lines marked as ALIASED are DNS names that are recognized within the system and are
used for registrations. Aliased DNS names are associated with a specific port and IP address.
In this example, my.company.com is associated with the interface profile named internal.
That profile listens on IP 127.0.0.1, port 5060. In essence, this means registrations to and
from FreeSWITCH for my.company.com should occur on IP 127.0.0.1, port 5060.

How to do it...
The following steps will show how to configure an SIP phone:

1. Decide on a new username and password you wish to register with.

2. Open directory/default/USERNAME.xml in the FreeSWITCH configuration
directory. Replace USERNAME with a name or extension number (such as 2000).

3. Add the following content to the file and save it:
<include>
 <user id="USERNAME">
 <params>
 <param name="password" value="PASSWORD"/>
 </params>
 </user>
</include>

Replace USERNAME and PASSWORD in the code with a username and password of
your choosing.

4. Load the FreeSWITCH CLI using.

5. Reload the in-memory configuration in FreeSWITCH's CLI by typing:
reloadxml

You should now be able to configure your softphone or device to register with FreeSWITCH. To
do this, set your username as USERNAME like shown, and your password as the PASSWORD
within your softphone or device. Set your server to register to the ALIAS you identified earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

32

For example, if you created a user 1029 and password PASS, you would enter the following
into your softphone:

Username: 1029
Password: PASS
Server: my.company.com

How it works...
Let's explain what you've done.

In the default directory, you've defined a SIP Username in the <user id=""> field. This
username is used for authentication of SIP packets.

You've added this option in a file within the directory/default/ folder, which includes it
as part of the default directory domain. That domain, by default, is your server's domain name
(the my.company.com part—probably an IP address on your system).

There's more...
The SIP registration shown earlier was extremely basic. It doesn't set the Caller ID for the
device/user, it doesn't specify a context for their calls to be placed in, and it doesn't add any
extra variables to the account. Let's talk about these options as they are common additions to
any registration and directory entry.

Caller ID
Using the previous example, suppose you want user 1029 to have a specific caller ID. You can
make this happen by defining a variable within the directory section of a user's definition.

The example sets the Caller ID Name to "Mary Sue" and the Caller ID Number to "1029."
Note that, if you choose to, you can override this setting within the dialplan—currently the
directory entry variable is set when the call starts, but prior to the dialplan processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

33

Customizing context
Calls received by FreeSWITCH will be directed to the context of the associated port and
IP that a call comes in on, by default. For example, calls received on port 5060 that are
authenticated are assumed to be from an "in-house phone" and get to use the default
context. If, for some reason, you wish to override a particular device with a special context
selection, you can do so by adding an additional variable:

<include>
 <user id="USERNAME">
 <params>
 <param name="password" value="PASSWORD"/>
 </params>
 <variables>
 <variable name="effective_caller_id_name" value="Mary Sue"/>
 <variable name="effective_caller_id_number" value="1029"/>
 <variable name="user_context" value="special"/>
 </variables>
 </user>
</include>

In the code, adding the variable user_context will route all calls from this device to the
special context initially.

See also
Chapter 4, Getting familiar with the fs_cli interface

Connecting audio devices with PortAudio
Many of us have a USB headset or a sound card in our laptops or desktop computers. In
most cases, FreeSWITCH can utilize these audio devices. Usually this is done for basic
troubleshooting or to feed an external audio source into FreeSWITCH. It is also handy when
you wish to use FreeSWITCH as a softphone, which is demonstrated later in this chapter.

Getting ready
The mod_portaudio module is already compiled for Windows users when using the Visual
Studio 2008/2010 solution files with the FreeSWITCH source code. Linux and Mac OSX users
will need to enable mod_portaudio in their FreeSWITCH installation. Follow these steps:

1. Open modules.conf in the FreeSWITCH source directory and remove the comment
on the #endpoints/portaudio line. Save the file and exit.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

34

2. Compile mod_portaudio using the following command:
make mod_portaudio-install

3. If you want to have mod_portaudio load automatically each time you start
FreeSWITCH then edit conf/autoload_configs/modules.conf.xml and
uncomment the following line:
<!-- <load module="mod_portaudio"/> -->

4. Save the file and exit.

5. If you do not load mod_portaudio automatically then simply load it using the
following command from fs_cli:
load mod_portaudio

Once mod_portaudio is loaded you are ready to start using the pa command.

How to do it...
The first thing to do is to become familiar with the pa command—pa being short for PortAudio.

1. At fs_cli type pa and press Enter. You will see that you have quite a few options.

2. To see a list of audio devices type pa devlist and press Enter. Here is the output
for a Macbook Pro laptop with no external headset plugged in:
freeswitch@internal> pa devlist

0;Built-in Microphone(Core Audio);2;0;i

1;Built-in Input(Core Audio);2;0;

2;Built-in Output(Core Audio);0;2;r,o

If you are using the standard speakerphone on the laptop then you are ready to make
a call. If you have a USB headset, plug it into a USB port on your computer.

3. Type pa devlist again—note that the headset is not listed. Issue the command pa
rescan and then pa devlist. Note that you now have a new device:
3;Logitech USB Headset(Core Audio);1;2;

4. We need to tell PortAudio to use this headset as the input (i) device and the output (o)
device. Optionally we can set it as the ring (r) device. The headset is device #3. Issue
these commands to set it as the input, output, and ring device:
pa indev #3

pa outdev #3

pa ringdev #3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

5. Now you can make a call. Use the pa call command to send a call through the
dialplan. Try calling 9196, the default echo test extension:
pa call 9196

6. You should hear your voice echoed back to you. When you are done testing, hang up
the call by issuing the pa hangup command.

How it works...
PortAudio allows FreeSWITCH to use local audio devices, such as sound cards and USB
headsets, as endpoints. Some systems have more than one input or output device so it is
necessary to specify which one to use by issuing the pa indev, pa outdev, and pa ringdev
commands. Using pa call and pa hangup allows you to handle phone calls right at the
FreeSWITCH command line.

There's more...
PortAudio can also receive calls on the portaudio channel. Try the following command from
fs_cli:

originate loopback/9664 bridge:portaudio inline

The portaudio channel will "ring" and you can answer by issuing the pa answer command.
You can eliminate the need to use pa answer by using the auto_answer option:

originate loopback/9664 bridge:portaudio/auto_answer inline

You can also use this technique to create a simple announcement system. You will need a
second phone, preferably a SIP phone registered to FreeSWITCH. Connect a set of speakers to
the appropriate output port on your sound card. If necessary, issue the pa outdev command
to select the device to which your speakers are connected. Test the connection with the
originate command. Assuming your SIP phone is registered as 1000, issue this command:

originate user/1000 bridge:portaudio/auto_answer inline

Your voice will now be heard over the speakers. You can also create a dialplan entry to
accomplish this. Here's an example:

<extension name="portaudio test">
 <condition field="destination_number" expression="^(9908)$">
 <action application="answer"/>
 <action application="bridge" data="portaudio/auto_answer"/>
 </condition>
</extension>

This extension would allow you to dial 9908 and make an announcement over the speakers.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

36

See also
 f The Using FreeSWITCH as a softphone recipe that follows

Using FreeSWITCH as a softphone
The previous recipe described the process of setting up FreeSWITCH to use a local audio
device such as a USB headset or a sound card. This recipe builds on the previous one by
showing you how to use a custom FreeSWITCH configuration that is tailored specifically for use
as a softphone (be sure to have PortAudio working before trying this recipe). Lastly, we will
direct your attention to a few open source softphone projects that utilize FreeSWITCH as the
VoIP engine.

Getting ready
This operation requires that we download a preconfigured FreeSWITCH configuration file.
Follow these steps:

1. Stop FreeSWITCH with this command:
freeswitch –stop

2. Back up your existing configuration (if desired). In a Linux/Unix environment a
command like this would suffice:
mv /usr/local/freeswitch/conf /usr/local/freeswith/conf.bak

Windows users can use the File Manager to rename the conf folder.

3. You can retrieve the softphone configuration from the FreeSWITCH sample configs
git repository with this command:
git clone git://git.freeswitch.org/freeswitch-sample-configs.git

This downloads all of the sample configurations, one of which is named "softphone".
Copy the softphone subdirectory over to the installation directory (/usr/local/
freeswitch) and name it conf.

4. The last step is to configure any gateways that you may have. These should be placed
in conf/accounts. If you have already configured one or more gateways in your
standard FreeSWITCH configuration you can simply copy those XML files into conf/
accounts without making any other modifications.

5. Start FreeSWITCH in the foreground (do not use the –nc flag):
/usr/local/freeswitch/bin/freeswitch

6. Use the pa indev and pa outdev commands to select your audio device.

You are now ready to try out the FreeSWITCH softphone configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

How to do it...
Simply make a call using the pa call command. The softphone configuration accepts a
number of different dialstring formats. For simple testing use a simple SIP URI. Try calling the
FreeSWITCH public conference server:

pa call sip:888@conference.freeswitch.org

Issue a pa hangup command to end the call.

How it works...
The softphone configuration is an example of a more streamlined FreeSWITCH configuration.
It puts all configuration options into freeswitch.xml (except for your custom gateway
files) and it loads only a specific set of modules. For example, it does not load mod_event_
socket, which means you cannot use fs_cli (and thus why you must start FreeSWITCH
without the –nc flag). Feel free to examine freeswitch.xml—it is less than 300 lines!

Here are a few more features to keep in mind:

 f The softphone configuration accepts SIP URIs in the form of sip:user@domain or
sip:codec:user@domain.

 f The softphone configuration lets you call a phone number without specifying a
domain name or gateway if you have configured a default gateway. For example: pa
call 18005551212.

 f If you have a single gateway and you would like it to be used for all outbound calls
then modify the following line in freeswitch.xml to use the name of your gateway:
<X-PRE-PROCESS cmd="set" data="default_gateway=default"/>

 f You can customize your caller ID sending by modifying the following lines in
freeswitch.xml:
<X-PRE-PROCESS cmd="set" data="outbound_caller_name=FreeSWITCH"/>
<X-PRE-PROCESS cmd="set" data="outbound_caller_id=0000000000"/>

There's more...
As of this writing, there are two projects in development that are softphones which utilize
FreeSWITCH as the VoIP engine. The first one is called FreeSWITCH Communicator. It is found
in the FreeSWITCH source tree in the fscomm directory. It is a cross-platform softphone based
on Nokia's QT library. Visit http://wiki.freeswitch.org/wiki/FSComm to learn more.

The other softphone is Windows-only and is called FSClient. It can be found in the
freeswitch-contrib git repository. Visit http://wiki.freeswitch.org/wiki/
FSClient to learn more.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

38

See also
 f Refer to the Connecting audio devices with PortAudio recipe we saw earlier

Configuring a SIP gateway
Configuring a SIP gateway allows you to connect with outside carriers or other SIP machines.
You can connect with other FreeSWITCH or Asterisk boxes, or to upstream carrier SIP trunks.

SIP gateways have many, many options—too many to list here, so we'll review just a few.

Getting ready
First you'll need to gather some information about the remote server to which you are
connecting. The list generally includes:

 f IP address or hostname of the server you are connecting to

 f Username and password (if any)

 f How the carrier/gateway expects Caller ID to be handled (which SIP header Caller ID
should be placed in)

 f Whether registration is required

You'll also need to know the phone number format your carrier expects when you send calls to
them, and how they'll send calls to you.

Finally, you'll need to decide which of your existing SIP interfaces to tie this gateway to. All
gateways must be associated with a SIP interface (port and IP address). Note that, in most
cases, a gateway can be utilized on multiple SIP interfaces if desired.

Some carriers use SIP registrations to figure out how to send calls to you,
while other carriers map IP and port addresses permanently to deliver
calls to you. Some carriers also allow DNS based records to be used. You
should find out what your provider utilizes, as you generally set these
options within the provider's configuration interface and not FreeSWITCH.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

How to do it...
Gateways are associated with SIP profiles because FreeSWITCH needs to know which IP and
port to send traffic to and from in relation to the carrier.

First, you'll need to add a gateway to your SIP profile. Let's assume you're using the default
FreeSWITCH configuration. In this case, we'll create a gateway that is attached to the default
external profile.

1. Create a file in the conf/sip_profiles/external/ directory named after your
gateway (that is, cheap_tel.xml)

2. Add the following content (note that even if you are not registering, a username and
password is required) but replace the highlighted items with your own provider:
<include>
 <gateway name="providerA">
 <param name="realm" value="sip.2600hz.com"/>
 <param name="username" value="darren"/>
 <param name="password" value="test"/>
 <param name="register" value="true"/>
 </gateway>
</include>

3. You will access the gateway by using the bridge application with sofia/gateway/
providerA/number, such as sofia/gateway/providerA/4158867999. You
can do this in any dialplan you are using. In this example, edit your dialplan (typically
the default dialplan in conf/dialplan/default.xml) and add code to utilize
the gateway:
 <extension name="dial-10-digit-numbers">
 <condition field="destination_number"
 expression="^(\d{10})$">
 <action application="bridge"
 data="sofia/gateway/providerA/$1"/>
 </condition>
 </extension>

4. Issue a reloadxml command in your FreeSWITCH CLI after making the
mentioned changes.

5. Issue a sofia profile external rescan to instruct FreeSWITCH to find any new
gateways or settings on the profile external and add them to the running stack.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

40

Sofia profile rescan versus reload
When making changes to your SIP configuration files you will have to tell
FreeSWITCH's SIP module ("sofia") that you want those changes to take
effect. Simply reloading the XML configuration does not force sofia to apply
the changes. Instead, you will need to tell the sofia profile to rescan or
reload.
The reload option will completely stop the sofia profile, dropping all
calls in progress, and then restart the profile with the new changes applied.
The rescan option is much less intrusive. Instead of stopping the profile
altogether it simply looks for the changes made in the XML configuration
and selectively applies them. Changes to a gateway only require a rescan.
However, changes made to the sofia profile parameters require a reload.

How it works...
In step 2, you defined a very basic gateway containing a gateway name, a server name, a
username, and a password. In step 3, you added a condition that matched 10-digit numbers
and bridged calls to such numbers using your new gateway.

Note that in the bridge application in step 3 you utilize what was captured in your regular
expression ($1) to pass along the number that was dialed.

Step 4 and step 5 simply tell FreeSWITCH to load your new profile into memory and activate it.

There's more...
Connecting to a provider is usually just the first step in configuring outbound calls. The
following sections provide additional information on how to make your FreeSWITCH gateways
more effective.

Adding prefixes to dial strings
You can add prefixes to the bridge dial strings in multiple ways. In the simplest form, you
might want to add a country or area code to the beginning of a number. In the example, if
you modify the bridge string from sofia/gateway/providerA/$1 to sofia/gateway/
providerA/+1$1, your calls will now be completed with a prefix of +1 in front of the 10-digit
number. This is commonly referred to as E.164 format.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

Another common strategy is to add an account code or customer code to the beginning of a
gateway. To do this, you can add a prefix that is based on a channel variable. In this scenario,
let's say you have a customer with account code 38234 and a customer with account code
93289. Each customer makes calls from a specific IP address. You might have an XML
dialplan that looks like this:

<extension name="check_customer_1">
 <condition field="network_addr" expression="^2\.3\.4\.5$">
 <action application="set" data="accountcode=38234"
 inline="true"/>
 </condition>
</extension>

<extension name="check_customer_">
 <condition field="network_addr" expression="9\.8\.7\.6$">
 <action application="set" data="accountcode=93289"
 inline="true"/>
 </condition>
</extension>

<extension name="dial-10-digit-numbers">
 <condition field="accountcode" expression="^.+$"/>
 <condition field="destination_number" expression="^(\d{10})$">
 <action application="bridge"
 data="sofia/gateway/providerA/${accountcode}$1"/>

 </condition>
</extension>

In the example, we first set the appropriate $accountcode variable (inline) during dialplan
processing to identify the client. We then bridge to the provider only if the accountcode
variable is set, and utilize the accountcode in the dial-string (see bold portion of
bridge command)

Monitoring gateways
There are many additional parameters available on your gateway profile. One such parameter
is the OPTIONS ping setting. This tells FreeSWITCH to ping the gateway periodically and ensure
it's up. This is useful so that, if the gateway is down, you do not hang while trying to reach the
gateway and can instead do error handling and/or move on to a new gateway/carrier.

To implement OPTIONS pings, simply add this parameter to your gateway definition (step 2 in
How to do it):

<param name="ping" value="25"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

42

This will ping the gateway every 25 seconds to ensure it's up. Note that at the time of this
writing the lowest ping value allowed by FreeSWITCH is five seconds. If the gateway is down,
FreeSWITCH will continue sending OPTIONS pings at the specified interval.

Configuring Google Voice
Google Voice (also known as Google Talk) is accessed via the mod_dingaling module,
which provides XMPP support. (If you would like to learn more about XMPP, visit
http://xmpp.org.) Mod_dingaling can act as both a XMPP server and a XMPP client,
though it is generally used for its client abilities. With Google Voice, XMPP simply serves to
establish sessions (much like SIP) and the audio properties and stream are otherwise merely
RTP, just as in any VoIP call, using codecs you already know, like PCMU, GSM, and so on.

When using Google Voice with FreeSWITCH, your FreeSWITCH system initiates connections to
or from Google Voice and can convert the audio and signaling into any other form—including
SIP. This allows calls from Google Voice to your SIP phone and vice versa.

Getting ready
To get started, you're going to need your Google Voice user credentials. The process after that
is straightforward.

How to do it...
You will need to modify the jingle profile's client file, which is located in conf/jingle_
profiles/client.xml and then load (or reload) mod_dingaling.

1. Open client.xml in a text editor and change the highlighted lines:
<include>
 <profile type="gtalk">
 <param name="name" value="gmail.com"/>
 <param name="login" value="user@gmail.com/gtalk"/>
 <param name="password" value="your_password"/>
 <param name="dialplan" value="XML"/>
 <param name="context" value="public"/>
 <param name="exten" value="7901"/>
 <param name="rtp-ip" value="auto"/>
 <param name="auto-login" value="true"/>
 <param name="sasl" value="plain"/>
 <param name="server" value="talk.google.com"/>
 <param name="tls" value="true"/>
 <param name="use-rtp-timer" value="true"/>
 <param name="vad" value="both"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

 <param name="local-network-acl" value="localnet.auto"/>
 </profile>
</include>

Change the values of the highlighted items in the code to your Google Talk/Google
Voice username and password. Also, change the XML dialplan context and extension
to route incoming calls to your desired destination.

2. Issue reloadxml at the CLI.

3. Make sure mod_dingaling is loaded in FreeSWITCH. At the CLI, type:
load mod_dingaling

4. Add a way to make outbound calls via the new XMPP connection (this should look
similar to your other gateways, as described earlier):
<extension name="dial-10-digit-numbers">
 <condition field="destination_number"
 expression="^(\d{10})$">
 <action application="bridge"
 data="dingaling/gtalk/+1$1@voice.google.com"/>
 </condition>
</extension>

How it works...
mod_dingaling controls messaging to/from Google Talk using XMPP. It uses profiles to
define usernames, passwords, and servers with which to communicate. You can have as
many profiles as you like, and each one is accessible with this dialstring syntax: dingaling/
PROFILE_NAME/destination@voice.google.com.

In FreeSWITCH, XMPP profiles are called "jingle profiles".

Codec configuration
Codec configuration is very versatile in FreeSWITCH. In IP telephony, there are several differing
scenarios for negotiating and choosing codecs. To meet the varying demands, FreeSWITCH
has several configurable modes of operation as well as real-time variables that can influence
how codec negotiation takes place. Typically the goal should be to reduce transcoding or
resampling as much as possible. Transcoding is the case where two sides of the call have
different codecs and audio flowing in either direction has to be completely decoded and re-
encoded to the opposite channel's format. Resampling is similar but it is required when each
side of the call is running at a different sample rate and the audio has to be "resampled" to
the correct rate. One or both of these can be necessary depending on where you direct your
calls to and how you have your codec configuration set.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

44

Getting ready
The biggest decision to make up front is late-negotiation or early-negotiation. This setting
tells FreeSWITCH to either validate the codec before the channel even hits the dialplan or to
wait until the moment where media is absolutely necessary to perform codec negotiation.
This gives you a chance to decide on a codec from your dialplan logic or even from the result
of an outgoing call you intend to bridge. With early-negotiation, there is not much you can
do to control the codec behavior of inbound calls so for this recipe we will work with late-
negotiation. To prepare follow these steps:

1. Open your sofia profile conf/sip_profiles/internal.xml in a text editor and
look for this line:
<!--<param name="inbound-late-negotiation" value="true"/>-->

2. Uncomment this parameter to enable late-negotiation for all calls.

3. Save the file and exit. At the fs_cli press F6 or issue the reloadxml command
and then issue the command sofia profile internal restart.

You are now ready to experiment with codec negotiation.

How to do it...
To test late codec negotiation, follow these steps:

1. Add the following extension to your dialplan. Create conf/dialplan/default/01_
codec_negotiation.xml and add these lines:
<include>
 <extension name="example">
 <condition field="destination_number" expression="^1234$">
 <action application="set" data="inherit_codec=true"/>
 <action application="bridge"
 data="sofia/internal/1234@cluecon.com"/>
 </condition>
 </extension>
</include>

2. Save the file and exit. At fs_cli, issue the reloadxml command or press F6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

How it works...
Once the late-negotiation parameter is set you can set a special channel variable called
absolute_codec_string. This variable is the same format as all other codec parameters
inside FreeSWITCH and contains a comma separated list of codec names with modifiers to
choose the rate or interval such as G729, PCMU@30i, or speex@16000h. The @i means to
set the interval (milliseconds of audio per packet) and the @h sets the hertz (sampling rate)
of the codec. So a simple dialplan that sets absolute_codec_string, then places an
outbound call, can demonstrate how to choose a codec using late-negotiation:

 <extension name="example">
 <condition field="destination_number" expression="^888$">
 <action application="set"
 data="absolute_codec_string=PCMU@30i"/>
 <action application="conference" data="888@default"/>
 </condition>
 </extension>

Let's take it a step further. Say you are placing an outbound call to one or more servers and
you want to avoid transcoding, but you don't know what codec that outbound call will offer
and it would be too late at that point to set the absolute_codec_string. The solution is
to use another important variable called inherit_codec. This variable, when set to true,
tells FreeSWITCH to automatically set absolute_codec_string to the value of the codec
that was negotiated by the outbound leg in the case of a bridged call. This way, you can allow
the outbound call to negotiate a codec then pass that decided value back to the inbound leg
before media was established. This will then force the inbound leg to request the same codec
as the outbound leg and eliminate transcoding.

When calling the example extension, the call hits the XML dialplan and executes the
instructions contained in the action tags. First, the variable inherit_codec is set to
true and then the call is bridged to 1234@cluecon.com over SIP. Because we enabled
the inbound-late-negotiation parameter, the codec has not yet been chosen for the
inbound leg. The outbound leg then proceeds to connect to cluecon.com where a codec will
be chosen when the far-end answers or establishes media. At this point the FreeSWITCH call
origination engine will take the codec from the outbound leg and set it as the absolute_
codec_string on the inbound leg. Next, the media indication is passed across, which will
prompt the inbound leg to negotiate media and offer the same codec as the outbound leg.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Telephones and Service Providers

46

There's more...
You can also limit the codecs you offer to the outbound leg with another special variable
called ep_codec_string. The ep_codec_string variable contains the list of codecs
offered by the calling endpoint. This variable is the same one used by the inherit_codec
behavior and can be used on an inbound call to make sure you only offer codecs on the
outbound leg that were initially offered to the inbound leg. Here is the previous example with
this extra functionality enabled:

 <extension name="example">
 <condition field="destination_number" expression="^1234$">
 <action application="set" data="inherit_codec=true"/>
 <action application="export"

 data="nolocal:absolute_codec_string=${ep_codec_string}"/>

 <action application="bridge"
 data="sofia/internal/1234@cluecon.com"/>
 </condition>
 </extension>

The export application sets the desired variable on the inbound leg, just like the set
application, but marks it to be copied to (that is "exported" to) any outbound call legs
generated by the channel on which it is set. The nolocal: syntax prevents the variable from
applying to the channel on which it was set but still copies it to any outbound legs. So in this
case we use export to set nolocal:absolute_codec_string to the current value of
ep_codec_string for any outbound calls. This means when we bridge to 1234@cluecon.
com our absolute_codec_string will be set to exactly what codecs the inbound leg
was offered.

Avoiding codec negotiation altogether
It's also possible to route your calls to a script or some other application that does not require
media and uses logic to influence the absolute_codec_string in similar ways to what
was demonstrated earlier. If you want to try to be completely uninvolved with the codec
negotiation, you can try setting the variable bypass_media to true before you call the
bridge application and FreeSWITCH will present the inbound SDP to the outbound leg and
vice-versa, completely eliminating FreeSWITCH from the media path but still keeping it in the
signaling path. This , however, does not work well under NAT conditions.

www.it-ebooks.info

http://www.it-ebooks.info/

3
Processing Call
Detail Records

In this chapter, we will cover:

 f Using CSV CDRs

 f Using XML CDRs

 f Inserting CDRs into a backend database

 f Using a web server to handle CDRs

 f Using the event socket to handle CDRs

Introduction
Call detail records (CDRs) are an important part of the accounting process on any phone
system. They are also an invaluable resource for troubleshooting. FreeSWITCH provides
several different methods for generating CDRs. The most common method is to create plain-
text, comma-separated value (CSV) files. Each line in the CSV file represents one phone call
(or, more accurately, one call leg). There are other options for processing CDRs, most notably
using mod_xml_cdr to store more detailed information about calls as well as using the event
socket to process CDR information.

Using CSV CDRs
It is a simple matter to store CDRs in CSV format. This recipe describes the steps necessary to
store call records in plain-text CSV files.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Call Detail Records

48

Getting ready

In the default configuration, mod_cdr_csv is compiled and enabled by default. CDR
data is stored in the $FS_INSTALL/log/cdr-csv/ directory. To review the options
available, open the file conf/autoload_configs/cdr_csv.conf.xml. Here are the
parameters available in the settings section:

<settings>
 <!-- 'cdr-csv' will always be appended to log-base -->
 <!--<param name="log-base" value="/var/log"/>-->
 <param name="default-template" value="example"/>
 <!-- This is like the info app but after the call is hung up -->
 <!--<param name="debug" value="true"/>-->
 <param name="rotate-on-hup" value="true"/>
 <!-- may be a b or ab -->
 <param name="legs" value="a"/>
 <!-- Only log in Master.csv -->
 <!-- <param name="master-file-only" value="true"/> -->
 </settings>

We will review some of these options in the following section.

How to do it...
The easiest way to see a new CDR is to use a utility such as cat in Linux/Unix or type in
Windows. Alternatively, if you are in a Linux/Unix environment you can use the tail utility to
see the end of a text file (Windows does not ship with a tail utility, but there are free and
open source options available).

Here are steps you can use in a Linux/Unix environment:

1. Change directory into /usr/local/freeswitch/log/cdr-csv/.

2. Execute tail –f Master.csv to display new CDR entries.
3. Make a test call, perhaps from one phone to another.

4. Hang up the test call and note the new CDR that is appended to Master.csv.
5. Press Ctrl + C to exit the tail command.

Here is a sample CDR from a call made from 1001 to 1007:

"Michael Collins","1001","1007","default","2011-03-02 12:09:25","2011-
03-02 12:09:26","2011-03-02 12:09:29","4","3","NORMAL_
CLEARING","f896639c-4508-11e0-a4cb-fb7d5a93c62e","f89d504e-4508-11e0-
a4cc-fb7d5a93c62e","1001","G722","G722"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

49

How it works...
By watching the Master.csv file we can observe new CDRs being written to disk. While not
particularly useful in a production system, doing this helps us to learn about CDRs and the
information they contain. Furthermore, it is a simple troubleshooting tool you can use down
the road.

There's more...
There are a number of things to keep in mind when using CSV CDRs. The following sections
will help you make the best use of them.

File names and locations
If you do a directory listing of log/cdr-csv you will probably see a number of files in addition
to Master.csv. For example, if you make a call from 1001 to 1007, you will see a file named
1001.csv (note that, this file name is controlled by the user's accountcode parameter in
their directory configuration). By default, each directory user has his/her own .csv file that
contains only that user's call records. This is purely a feature for convenience and can be
disabled in conf/autoload_configs/cdr_csv.conf.xml by setting this parameter:

<param name="master-file-only" value="true"/>

You may see other files with date/time stamps in their names like this:

Master.csv.2011-02-24-16-51-06

These files are created when a log rotate has been requested. This behavior can also be
changed by setting this parameter:

<param name="rotate-on-hup" value="false"/>

Lastly, you can specify the base directory name where the cdr-csv/ directory will be created
and written to by using the base-log parameter. For example, setting <param name="log-
base" value="/var/log"/> will force all CSV CDR files to be written to the /var/log/
cdr-csv/ directory.

When changing parameters in cdr_csv.conf.xml be sure to
save your changes and then issue the reload mod_cdr_csv
command at the fs_cli in order for the changes to take effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Call Detail Records

50

Other options
There are a few other options in the settings section of cdr_csv.conf.xml. The first
one is the debug parameter. Setting this to true will simply cause each call to perform an
information dump (like the info dialplan application) when the call hangs up. Note that this
will dump both to the fs_cli and to the FreeSWITCH log file, so be aware of disk space.

The other option is called legs. This will determine which call leg or legs get a CDR. By default
only the A leg (that is the calling leg) gets a CDR. You can set this parameter to "b" to log only
the B leg (that is the called leg) or you can set it to "ab" so that you receive a CDR for each leg.
Handling A and B legs is discussed later in this chapter.

CDR CSV templates
The default-template parameter determines which CDR template is used when creating
the CDR record. Notice the <templates> section of cdr_csv.conf.xml. There are various
templates that you can use or edit. You may also create your own templates. By default we
use the example template. Feel free to change or edit the default-template parameter to
use a different template. The asterisk template will output CDRs in the format used by the
Asterisk PBX. The sql template will output records in a particularly useful format which we
will discuss in the recipe Inserting CDRs into a backend database.

Templates have another feature that allows for custom behavior. When a channel has the
variable accountcode set to the name of a template, that call's CDR will be formatted in the
specified template. You can test this behavior by editing a directory user and setting his or her
account code:

1. Open conf/directory/default/1007.xml and set this value:
<variable name="accountcode" value="sql"/>

2. Save the file and exit. Issue reloadxml at fs_cli.
3. Make a test call from 1007 to another phone, answer, then hangup.

4. You will now have a file named sql.csv in your cdr-csv/ directory.

This technique can be used to customize the kinds of data that are stored. For example, you
may have a client whose records need to have custom channel variables included in the CDR
file, however you may not want every call in your system to include that information. Using
accountcode and a CDR CSV template allows you to tailor the behavior as needed.

See also

 f Refer to the Inserting CDRs into a backend database recipe later in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

51

Using XML CDRs
XML CDRs have a wealth of information that cannot be easily represented in a traditional
CSV flat-file format. In this recipe, we will enable mod_xml_cdr and discuss a few of its
configuration options.

Getting ready

In the default configuration, mod_xml_cdr is compiled but is not enabled. Follow
these steps to enable it:

1. Open conf/autoload_configs/modules.conf.xml.
2. Uncomment this line:

<!-- <load module="mod_xml_cdr"/> -->

3. Save the file and exit.

Now mod_xml_cdr will load automatically when FreeSWITCH starts. However, if
FreeSWITCH is already running then we need to load it manually. Simply issue the
command load mod_xml_cdr at the fs_cli and the module will be loaded. XML CDR
data will now be stored in the $FS_INSTALL/log/xml-cdr/ directory.

XML CDRs have many options. To review them, open the file conf/autoload_
configs/xml_cdr.conf.xml. We will be discussing some of these options later in
this recipe.

How to do it...
The easiest way to see a new XML CDR is to use a utility like cat in Linux/Unix or type in
Windows (note that, the Windows Powershell has an alias for the cat command). Alternatively
you can use a utility such as less to page through the contents of a file. Both Windows and
Linux/Unix support piping the output to more to achieve the same effect.

Here are steps you can use in a Linux/Unix environment:

1. Change directory into /usr/local/freeswitch/log/xml-cdr/.
2. List the directory contents with the ls command.
3. Make a test call, perhaps from one phone to another.
4. Hang up the test call and note the new XML CDR named a_uuid.xml.
5. Type less a_uuid.xml and press Enter to see the contents of the XML CDR file.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Call Detail Records

52

How it works...
By watching the log/xml-cdr/ directory we can observe new CDRs being written to the
disk. While not particularly useful in a production system, doing this helps us learn about XML
CDRs and the information they contain. Furthermore, it is a simple troubleshooting tool you
can use in the future.

What is a UUID?
When dealing with CDRs, and especially XML CDRs, you will be
presented with many UUIDs. UUID stands for Universally Unique
Identifier. It is a string of 32 hexadecimal digits divided into five
groups, separated by hyphens. An example UUID is 678a195f-
8431-4d77-8f10-550f7435f18e. Each call leg receives a UUID in
order to keep it distinct from all other call legs.

There's more...
The mod_xml_cdr module can do many things, not the least of which is to post new XML
CDR information to a web server. The web server can then process the XML CDR, whether that
means simply updating a database or performing other billing functions. These are discussed
further in the recipe Using a web server to handle CDRs later in this chapter.

File names and locations
In the conf/autoload_configs/xml_cdr.conf.xml file there are two parameters in
the <settings> section that affect file names and locations. The first parameter is called
prefix-a-leg. When set to true, the A leg XML CDRs will have "a_" prefixed to the file
name. This makes it easier to distinguish between A leg and B leg files.

The other parameter is log-dir. When set to an absolute path it will change the location
where /xml-cdr/ is located. For example:

<param name="log-dir" value="/var/log"/>

This will cause all XML CDRs to be written to the /var/log/xml-cdr/ directory (you can
also set it to a relative path, but that is rarely used).

Note: when changing parameters in xml_cdr.conf.xml be sure
to save your changes and then issue the reload mod_xml_cdr
command at the fs_cli in order for the changes to take effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

53

Logging the B leg
By default, mod_xml_cdr only logs the A leg (that is the calling leg) of the call. If you wish to
log the B leg (that is the called leg) then set this parameter:

<param name="log-b-leg" value="true"/>

This will cause B leg XML CDRs to be written. Note that B leg CDRs will always be named
uuid.xml where uuid is the actual UUID of the call. There is no option to prefix the file name
with "b_" like there is with the A leg.

See also
 f Refer to the Using a web server to handle CDRs recipe later in this chapter

Inserting CDRs into a backend database
Frequently it is necessary to put CDR information into a database such as MySQL, PostgreSQL,
or other SQL databases. FreeSWITCH does not support writing CDRs directly to a database
(the decision not to write directly to a database is an engineering, not a technical limitation).
This recipe discusses the simple method of writing SQL-based CSV files and then using those
to update a backend database.

Getting ready
Of course, you will need a database in which to store your files. Any SQL-compliant database
will work as long as you can use the command line to execute SQL statements. Create a
database for your CDRs and allow any necessary access. This is completely dependent upon
the type of database you have—consult your database documentation for specific instructions.

You will also need a table for the CDRs. The following CREATE TABLE syntax for a PostgreSQL
database will work for the existing sql template in cdr_csv.conf.xml:

CREATE TABLE cdr (
 caller_id_name character varying(30),
 caller_id_number character varying(30),
 destination_number character varying(30),
 context character varying(20),
 start_stamp timestamp without time zone,
 answer_stamp timestamp without time zone,
 end_stamp timestamp without time zone,
 duration integer,
 billsec integer,
 hangup_cause character varying(50),
 uuid uuid,

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Call Detail Records

54

 bleg_uuid uuid,
 accountcode character varying(10),
 read_codec character varying(20),
 write_codec character varying(20)
);

A similar CREATE TABLE command works for MySQL as follows:

CREATE TABLE cdr (
 caller_id_name varchar(30) DEFAULT NULL,
 caller_id_number varchar(30) DEFAULT NULL,
 destination_number varchar(30) DEFAULT NULL,
 context varchar(20) DEFAULT NULL,
 start_stamp datetime DEFAULT NULL,
 answer_stamp datetime DEFAULT NULL,
 end_stamp datetime DEFAULT NULL,
 duration int(11) DEFAULT NULL,
 billsec int(11) DEFAULT NULL,
 hangup_cause varchar(50) DEFAULT NULL,
 uuid varchar(100) DEFAULT NULL,
 bleg_uuid varchar(100) DEFAULT NULL,
 accountcode varchar(10) DEFAULT NULL,
 domain_name varchar(100) DEFAULT NULL
);

All the examples in this recipe will use a database name of "cdr" and a table name of "cdr". The
last thing to do is to set the sql template as the default CDR template. Follow these steps:

1. Open conf/autoload_configs/cdr_csv.conf.xml.
2. Change the default-template parameter to <param name="default-template"

value="sql"/>.
3. Save the file and exit. Issue the reload mod_cdr_csv command at the fs_cli.
4. Issue the fsctl send_sighup command at the fs_cli to rotate the log files.

You are now ready to create and process CDRs.

How to do it...
Follow these steps to get a call record into your new database table:

1. Make a test call from one phone to another, answer, wait a moment, and then hang
up (you should now have at least one record in Master.csv).

2. Issue the fsctl send_sighup command at the fs_cli.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

55

3. List the contents of your log/cdr-csv/ directory and note the presence of a rotated
Master.csv file, for example Master.csv.2011-03-02-16-25-21.

4. The rotated Master.csv file is the one to use for inserting records into your
database. You will need to use your specific database's command line client to insert
the records. For PostgreSQL use a command like this:
cat Master.csv.2011-03-02-16-44-29 | tr \" \' | psql -U postgres
cdr

5. Confirm the presence of the record in the cdr table with a simple SQL query like
SELECT * FROM cdr. Delete the rotated Master.csv file.

How it works...
The mod_cdr_csv sql template writes out CDRs in the format of a single SQL INSERT
statement per line. A sample record looks like this:

INSERT INTO cdr VALUES ("Michael Collins","1001","1007","defa
ult","2011-03-02 17:02:21","2011-03-02 17:02:23","2011-03-02
17:02:25","4","2","NORMAL_CLEARING","e4cfe0b2-4531-11e0-b634-
d7bcff4e7b8a","e4d6b072-4531-11e0-b635-d7bcff4e7b8a", "1001");

These INSERT statements can be piped into a database's command line client. Note the use
of tr to translate double quotes to single quotes for compatibility with PostgreSQL.

Your production environment may have specific requirements when it
comes to things like single versus double quotes in PostgreSQL. Using
the Unix tr command is one method of handling the issue. You could
also modify the template to use single quotes instead of double quotes.

Finally, after confirming that the CDR was successfully inserted into the database we deleted
the rotated file. We could also archive those to another disk volume as a backup.

There's more...
Most system administrators will recognize that the commands presented here are easily
scriptable. Indeed, this is one reason why the FreeSWITCH developers did not create a native
direct-to-database module for CDRs. It is much safer to write CDRs directly to disk and then
have a cron job (or something similar) to perform all of the tasks. By breaking them down into
discrete tasks, rather than abstracting them away in a FreeSWITCH module, it becomes easier
to create robust, scalable solutions using proven methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Call Detail Records

56

In fact, you could set up a CDR database on a completely separate machine, and use basic
tools like fs_cli to rotate logs and scp or ftp to pull the files over to the local database
server. An intelligent script could then notify the system administrator of any issues. Also, as
long as there is disk space on the FreeSWITCH server, no CDR records will be lost in case of
a failed connection between the CDR server and the FreeSWITCH server. CDRs will continue
to be written to disk on the FreeSWITCH server and can be collected and processed when
connectivity has been re-established.

See also
 f Refer to the Getting familiar with the "fs_cli" interface recipe in Chapter 4

Using a web server to handle XML CDRs
One feature of FreeSWITCH's mod_xml_cdr is that it can use HTTP POST actions to send
CDR data to a web server which in turn can process those, perhaps putting them into a
database. This mechanism has several advantages:

 f Modern web servers can handle enormous amounts of traffic

 f Multiple FreeSWITCH servers can post to a single CDR Server

 f Multiple web servers can be set up to allow failover and redundancy

The recipe presented here will focus on the steps needed to get a web server set up to
process incoming POST requests with XML CDR data.

Getting ready
You will need an operational web server that you control. Most Linux/Unix and Windows
systems can have an Apache web server installed. Detailed instructions on configuring a web
server are beyond the scope of this book, however such instructions are available in numerous
books and on the Internet. This recipe will assume a clean install of the Apache web server,
but the principles apply to other servers such as Lighttpd and Nginx. For this example we will
assume the Apache server is on the same machine as your FreeSWITCH install.

How to do it...
Enable mod_xml_cdr on your server. (Refer to the Using XML CDRs recipe earlier in this
chapter). Next, follow these steps:

1. Open conf/autoload_configs/xml_cdr.conf.xml and locate this line:
<!-- <param name="url"
 value="http://localhost/cdr_curl/post.php"/> -->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

57

2. Change the line to this:
<param name="url" value="http://localhost/cgi-bin/cdr.pl"/>

3. Save the file and exit.

4. In your system's cgi-bin directory, create a new file named cdr.pl (the cgi-bin
directory is usually /usr/lib/cgi-bin but may be different on older systems). Add
these lines to the file:
#!/usr/bin/perl
 use strict;
 use warnings;
 use CGI;
 $|++;
 my $q = CGI->new;
 my $raw_cdr = $q->param('cdr');
 open (FILEOUT,'>','/tmp/cdr.txt');
 print FILEOUT $raw_cdr;
 close(FILEOUT);
print $q->header();

5. Save the file and exit.

6. Make the file executable with this command:
chmod +x /usr/lib/cgi-bin/cdr.pl

7. Log in to fs_cli and press F6 or issue the reloadxml command.

8. Make a test call and you should see the XML CDR contents in the /tmp/cdr.txt file.

How it works...
This is a simple Perl-based CGI script. All it does is pull the cdr parameter out of the POST
data that is submitted by mod_xml_curl. Once it has this value (in the variable $raw_cdr) it
dumps the CDR into the temporary file named /tmp/cdr.txt.

While this example is not particularly useful for production, it demonstrates the minimal
steps required to get the POSTed CDR data into the system. If you are more comfortable with
another scripting language, such as PHP, Python, or Ruby, you may just as easily process the
CDRs with those languages. Here is a simple version in PHP:

$raw_cdr = $_POST['cdr'];
 $writefile = fopen('/tmp/dump.txt',"w");
 fwrite($writefile, $raw_cdr);
fclose($writefile);

Once you have the data in your program you have more options for processing it.

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Call Detail Records

58

There's more...
A common practice with handling XML CDR data with a CGI script (or Fast CGI or some other
appropriate method to handle an HTTP POST request) is to process the data and then put it
into a database. This section describes how to insert the CDR into the same database table
that we created in the previous Inserting CDRs into a backend database recipe.

Assuming you have a database named "cdr" with a table also named "cdr", you can use this
modified cdr.pl script to insert the records right into the database.

You will need to use the cpan tool to install the DBI module
and the DBD driver for your database. Common ones are
DBD::mysql and DBD::PgPP. This example assumes
DBD::PgPP, the Postgres "pure perl" database driver.

The modified cdr.pl is as follows:

#!/usr/bin/perl
 use strict;
 use warnings;
 use CGI;
 use DBI;
 use Data::Dump qw(dump);
 $|++;
 my $q = CGI->new;
 my $raw_cdr = $q->param('cdr');
 my @all_fields = qw(caller_id_name caller_id_number
 destination_number context start_stamp answer_stamp end_stamp
 duration billsec hangup_cause uuid bleg_uuid \
 accountcode read_codec write_codec);
 my @fields;
 my @values;
 foreach my $field (@all_fields) {
 next unless $raw_cdr =~ m/$field>(.*?)</;
 push @fields, $field;
 push @values, "'" . urldecode($1) . "'";
 }
 my $cdr_line;
 my $query = sprintf(
 "INSERT INTO %s (%s) VALUES (%s);",
 'cdr', join(',', @fields), join(',', @values)
);
 my $db = DBI->connect('DBI:PgPP:dbname=cdr;host=localhost',
 'postgres', 'postgres');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

59

 $db->do($query);
 print $q->header();
 sub urldecode {
 my $url = shift;
 $url =~ s/%([a-fA-F0-9]{2,2})/chr(hex($1))/eg;
 return $url;
 }

This script is a simple example of inserting records into the database. The @all_
fields array is a list of every field in the cdr table. We cycle through this list looking for
corresponding values. If we find one, we use urldecode and then add the field name to the
@fields list and its value goes into @values. From there we create a query string using the
@fields and @values arrays and then insert them into the database.

See also
 f Refer to the Using XML CDRs and Inserting records into a backend database recipes

from earlier in this chapter

Using the event socket to handle CDRs
Sometimes you need to get CDR information immediately. FreeSWITCH accommodates those
needs with the powerful event socket. This recipe will briefly describe how to receive CDR
information on the event socket. You will also find more useful information on the event socket
interface in the following chapter.

Getting ready
This recipe relies on the event socket interface to FreeSWITCH. However, there are many
different ways of connecting to the event socket. Because of this we will use a simple
Perl script with the event socket library (ESL) to demonstrate the principles involved. Any
language that supports ESL can use the techniques demonstrated here.

Follow the steps in the Setting up the event socket library recipe found in Chapter 4.
Specifically, build the Perl module in order to run the example script.

How to do it...
Enter this script (or download it from the Packt website at http://www.packtpub.com):

#!/usr/bin/perl
handle_cdr.pl
Connect to event socket, listen for CHANNEL_HANGUP_COMPLETE events
Uses event data to create custom CDRs
 use strict;

www.it-ebooks.info

http://www.it-ebooks.info/

Processing Call Detail Records

60

 use warnings;
 use lib '/usr/src/freeswitch.git/libs/esl/perl';
 use ESL;
 my $host = "localhost";
 my $port = "8021";
 my $pass = "ClueCon";
 my $con = new ESL::ESLconnection($host, $port, $pass);
 if (! $con) {
 die "Unable to establish connection to FreeSWITCH.\n";
 }
 ## Listen for events, filter in only CHANNEL_HANGUP_COMPLETE
 $con->events('plain','all');
 $con->filter('Event-Name','CHANNEL_HANGUP_COMPLETE');
 print "Connected to FreeSWITCH $host:$port and waiting for
 events...\n\n";
 while (1) {
 my @raw_data = split "\n",$e->serialize();
 my %cdr;
 foreach my $item (@raw_data) {
 #print "$item\n";
 my ($header, $value) = split ': ', $item;
 $header =~ s/^variable_//;
 $cdr{$header} = $value;
 }
 # %cdr contains a complete list of channel variables
 print "New CDR: ";
 print $cdr{uuid} . ', ' . $cdr{direction} . ', ';
 print $cdr{answer_epoch} . ', ' . $cdr{end_epoch} . ', ';
 print $cdr{hangup_cause} . "\n";
 }

Run this script and make a test call. An abbreviated CDR will be printed to the screen. Press
Ctrl + C to exit the script.

How it works...
The basic principles involved are as follows:

 f Establish an ESL connection to FreeSWITCH

 f Subscribe to CHANNEL_HANGUP_COMPLETE events by using a filter

 f Process each event as an individual CDR

If you are more familiar with PHP, Python, or Ruby you should be able to translate these
concepts from our demonstration script.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

61

There's more...
Here are a few tips to help you make the most of using the event socket for CDRs.

ESL considerations
Keep in mind that the script will need to be able to find the ESL library. Note this line:

use lib '/usr/src/freeswitch.git/libs/esl/perl';

This tells Perl to look in the specified directory when using additional modules. Without it, the
use of ESL directive would fail (alternatively you can install the requisite ESL files into your
system's site_perl directory).

Another important point is that this method will receive two events for a normal call. The
A leg and the B leg each generate a CHANNEL_HANGUP_COMPLETE event. The value in
$cdr{direction} will be "inbound" for the A leg and will be "outbound" for the B leg.

Lastly, keep in mind that this line is blocking:

my $e = $con->recvEvent();

It will block the entire script until a new event arrives. See the Filtering events recipe in
Chapter 4 to see an example of the recvEventTimed() method that does not block.

Receiving XML CDRs
It is possible to receive the CDRs over the event socket in XML format. This is
controlled on a per-call basis using the hangup_complete_with_xml channel
variable. Set this variable to true in your dialplan as follows:

<action application="set" data=" hangup_complete_with_xml=true"/>

See also

 f Refer to the Using XML CDRs recipe in this chapter for more information on
XML-based CDRs

 f Refer to the Setting up the event socket library and Filtering events recipes
in Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4
External Control

In this chapter, we will cover:

 f Getting familiar with the fs_cli interface
 f Setting up the event socket library
 f Establishing an inbound event socket connection
 f Establishing an outbound event socket connection
 f Using fs_ivrd to manage outbound connections
 f Filtering events
 f Launching a call with an inbound event socket connection
 f Using the ESL connection object for call control
 f Using the built-in web interface

Introduction
One of the most powerful features of FreeSWITCH is the ability to connect to it and control it
from an external resource. This is made possible by the powerful FreeSWITCH event system
and its connection to the outside world: the event socket. The event socket interface is a
simple TCP-based connection that programmers can use to connect to the inner-workings of
a FreeSWITCH server. Furthermore, the FreeSWITCH developers have also created the Event
Socket Library (ESL), which is an abstraction layer to make programming with the event
socket a lot simpler. The following languages are supported by ESL:

 f C/C++
 f Lua
 f Perl
 f PHP
 f Python

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

64

 f Ruby

 f TCL

Keep in mind that the ESL is only an abstraction library—you can connect to the event socket
with any socket-capable application, including telnet!

The tips in this chapter will focus most of their attention on using the event socket for some
common use cases. The last tip, though, will introduce a particularly interesting way to
connect to FreeSWITCH externally without using the event socket, namely, using the built-in
web server that is enabled when you install mod_xml_rpc. Regardless of how you wish to
control FreeSWITCH, it is highly recommended that you read the first recipe in this chapter,
Getting familiar with the fs_cli interface, as this will serve you well in all aspects of working
with FreeSWITCH.

Getting familiar with the fs_cli interface
The preferred method of connecting to the FreeSWITCH console is to use the fs_cli
program, where "fs_cli" stands for FreeSWITCH Command-line Interface. This program
comes with FreeSWITCH, as part of the default installation, and works in Linux/Unix, Mac
OS X, and Windows. What is less well known about fs_cli is that it is an excellent example
of an ESL program. Beyond that, anything that you can do with fs_cli, you can do with
ESL and the event socket. (Keep in mind that when you are logged in to fs_cli you can do
anything that you can do at the FreeSWITCH console, including shutting down the system and
disconnecting any calls. Exercise appropriate caution when using fs_cli.)

The natural first step in mastering the external control of FreeSWITCH is to become
familiar with fs_cli. Indeed, it is one of the most important tools for interacting with your
FreeSWITCH server.

If you're familiar with C programming then you might appreciate
the source code for fs_cli. It is found in libs/esl/fs_cli.c
under the FreeSWITCH source directory.

Getting ready
The only prerequisites for running fs_cli are access to your system's command line and a
running FreeSWITCH server with mod_event_socket enabled (on a default installation mod_
event_socket is always enabled). However, you may find it convenient to allow fs_cli to
be launched from any directory on your system. In a Linux/Unix environment you can add a
symbolic link like this:

ln –s /usr/local/freeswitch/bin/fs_cli /usr/local/bin/fs_cli

Windows users can add the FreeSWITCH binary directory to their system's PATH variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

65

How to do it...
Follow these steps:

1. Launch fs_cli by typing fs_cli (or in Windows, fs_cli.exe) and pressing Enter.
A simple welcome screen will appear:
 _____ ____ ____ _ ___

 | ___/ ___| / ___| | |_ _|

 | |_ ___ \ | | | | | |

 | _| ___) | | |___| |___ | |

 |_| |____/ ____|_____|___|

* Anthony Minessale II, Ken Rice, Michael Jerris *

* FreeSWITCH (http://www.freeswitch.org) *

* Paypal Donations Appreciated: paypal@freeswitch.org *

* Brought to you by ClueCon http://www.cluecon.com/ *

Type /help <enter> to see a list of commands

+OK log level [7]

freeswitch@internal>

At this point you are at the fs_cli and can issue commands.

2. Try a simple command; type /help and press Enter and you will see a number of
commands you can enter. All commands that begin with a forward slash (/) are
specific to the fs_cli program.

3. You can also issue FreeSWITCH API commands. Type show api and press Enter. You
will see quite a long list of FreeSWITCH API commands that are available.

4. Lastly, type status and press Enter to see a brief status report on your
FreeSWITCH server.

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

66

How it works...
The fs_cli emulates the behavior of the FreeSWITCH console, which is available when
FreeSWITCH is run in the foreground, that is, without the –nc flag ("nc" stands for "no
console"). However, technically speaking, fs_cli is merely an event socket program.
Everything sent and received with fs_cli is done over the FreeSWITCH event socket.
Therefore, just about everything you can do from fs_cli you can also do with an event
socket-based program. Keep in mind that the "slash" commands are specific to fs_cli and
don't necessarily have an event socket equivalent, such as /help and /exit.

There are numerous ways to exit the fs_cli program. There are
three "slash" commands, namely, /exit, /quit, and /bye. You
can also type in three periods (...) and press Enter. On some
systems you can press Ctrl + D.

There's more...
Now that you are familiar with the general usage of fs_cli it is good to learn about some of
the more useful commands.

Important commands for listing information
FreeSWITCH administration frequently means getting information out of the server. Here is a
list and brief description of some commands you will no doubt want to use. Feel free to try any
of these on your system—they won't "break" anything—they simply give you information.

Command Shortcut Key Description
sofia status F5 Display general SIP information
sofia status profile
internal

F9 Display SIP information about the "internal"
profile

help F1 List available commands (equivalent to show
api)

show channels F3 List individual call legs
show calls F4 List bridged calls
/log 6 None Set log level to INFO (prevents the numerous

"debug" messages from being displayed)
/log 7 F8 Set log level to DEBUG (all "debug" messages

are displayed)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

67

Useful command line options
The fs_cli program has a number of command-line options. You can view them all by
executing fs_cli –h (or fs_cli.exe –h in Windows). The following are descriptions of
some of the more useful options:

Option Description
-x Execute a command, then exit
-r Retry connection (useful if you have just restarted FreeSWITCH and are

reconnecting)
-H Specify FreeSWITCH server host name or IP address to connect to
-P Specify FreeSWITCH server port to connect to

The –x option is particularly useful for doing things from the command line. For example, try
this command from your system's command prompt:

fs_cli –x "show channels"

You will receive the output from the show channels command and then be back at the
command shell. This technique can be used in shell scripts.

See the online documentation for fs_cli at http://wiki.
freeswitch.org/wiki/Fs_cli. It includes descriptions of all the
fs_cli commands as well as the handy .fs_cli_conf configuration file.

Viewing events
Event-based programming can be a daunting challenge at first. As a brief introduction it is
good just to look at the events that come over the event socket. The fs_cli can do this very
easily. At the fs_cli enter these two commands:

/log 0

/event plain all

Watch your screen for a few seconds and you will eventually see some events come in. Any
time a call is handled on the system there will be numerous events. There are events for
changes in call state, as well as new calls being set up and existing calls being torn down.
Issue the /noevents command to stop seeing the events come through.

The rest of this chapter contains a great deal of information about event socket programming.

See also
 f Refer to the Filtering events recipe in Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

68

Setting up the event socket library
Most event socket programming is not usually done in C, but rather one of the common
scripting languages, like Perl, PHP, Python, and Ruby. The Event Socket Library (ESL) is
available as a tool for those working in a Linux/Unix environment.

Getting ready
The most difficult part about using ESL with a scripting language is making sure that the
necessary development libraries have been installed. This process varies among operating
systems and languages. The instructions presented here are for Debian or Red Hat Linux
variants. If your operating system is not among these then it is recommended that you
check with the website for your language and look for instructions on how to install the
development libraries.

Debian
Debian variants (such as Ubuntu) generally use the apt package manager. The development
libraries can be installed with these commands:

apt-get install libperl-dev

apt-get install python-dev

apt-get install php5-dev

apt-get install ruby-dev

Red Hat
Red Hat Linux variants (RHEL, CentOS, Fedora) generally use the yum package manager. The
development libraries can be installed with these commands:

yum install python-devel

yum install php-devel

yum install ruby-devel

Most Red Hat variants have the requisite Perl development files already installed.

How to do it...
Once you have the necessary library files installed for your language of choice then you
are ready to do the actual build of ESL. Open a terminal and change directory into your
FreeSWITCH source directory. From there execute these commands:

cd libs/esl

make

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

69

This will confirm that your system's ESL libraries are ready to be used. From here you can
install the library for you language of choice. In our example we'll use Perl. Execute this
command:

make perlmod-install

You can also do other languages using one of the following commands:

 f make phpmod-install

 f make pymod-install

 f make rubymod (no -install here)

Once the installation is complete you can start using the ESL in your scripts.

How it works...
The make install commands will compile the ESL for each language and then install the
necessary files into the language's include path. If you have a non-standard installation
then you may have to install these files yourself. Once the files are installed you can use one
of the test scripts for your language. For example, you can change directory to the perl/
subdirectory and run the single_command.pl script for testing:

cd perl

perl single_command.pl status

The other languages have sample scripts as well. Run a sample script to confirm that your ESL
is working. From here you can move on to do other ESL-related tasks.

If you get an error, such as Can't call method "getBody" on an
undefined value then most likely FreeSWITCH is not running. Make
sure FreeSWITCH is running, and also make sure that you can
connect to it by using fs_cli.

Establishing an inbound event socket
connection

An "inbound" event socket connection means that an external script or program is connecting
to a FreeSWITCH server. The connection is inbound from the server's point of view. In fact,
every time you run the fs_cli utility you are making an inbound event socket connection.

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

70

Getting ready
Be sure that you have installed ESL for your preferred programming language. (See the
previous recipe, Setting up the event socket library.) From there you will just need a text editor,
command-line access, and a phone registered to your system. The examples presented here
are in Perl, however the accompanying code samples have corresponding examples in Python
as well.

How to do it...
The following code is a simple inbound connection that sends the status command to
FreeSWITCH. Add the code as follows:

1. Open scripts/ib_api.pl in a text editor and add these lines:
#!/usr/bin/perl
use strict;
use warnings;
require ESL;

my $host = "localhost";
my $port = "8021";
my $pass = "ClueCon";
my $con = new ESL::ESLconnection($host, $port, $pass);
if (! $con) {
 die "Unable to establish connection to $host:$port\n";
}
my $cmd = "status";
my $args = "";
my $e = $con->api($cmd, $args);

if ($e) {
 print "Result of $cmd $args command:\n\n";
 print $e->getBody();
} else {
 die "No response to $cmd command.\n";
}

2. Save the file and exit.

3. Linux/Unix users can make the script executable with this command:
chmod +x ib_api.pl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

71

4. Run the script and you will see the output of the status command.

Linux/Unix:./ib_api.pl

Windows: perl.exe ib_api.pl

How it works...
The script basically does these four things:

 f Uses (that is, "requires") the ESL library

 f Connects to FreeSWITCH with the ESL::ESLconnection object

 f Issues the status command with the connection object's api() method

 f Prints the results with the event object's getBody() method

Change the $cmd and $args values to issue a different command. For example, to see the
results of "sofia status profile internal" you would set the variables like this:

my $cmd = "sofia";
my $args = "status profile internal";

Note that we also do some very basic error checking. First, we confirm that we get a valid
ESL::ESLconnection object. Second, we make sure that we receive an event object as a
result of the $con->api call.

There's more...
The ESL event object has a number of methods. One of the most important ones is the
getBody() method. However, not all events actually have a body—they simply have a list of
headers. To see what the event headers look like, use the serialize() method like this:

print $e->serialize();

This will print out a list of headers and their corresponding values. (Try it!) You can also get an
individual header value with the getHeader() method:

print $e->getHeader('Event-Name');

Keep in mind that we are using the api() method which blocks (that is, it waits for a
response). This keeps things simple, however, there are times when blocking is not desired.
The ESL::ESLconnection object also has a bgapi() method for executing API commands
in a non-blocking manner. The bgapi() method is discussed further in the Launch a call with
inbound event socket connection recipe later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

72

See also
 f Refer to the Setting up the event socket library and Launching a call with inbound

event socket connection recipes in this chapter

Establishing an outbound event socket
connection

An "outbound" event socket connection lets you control a call leg from a program that sits and
waits for a TCP connection on a specific port. The dialplan socket application sends control
of the call to the process listening on the specified TCP port. This recipe will guide you through
the steps necessary to get a simple call control script up and running. You may find it easier
to understand the information presented here if you are at least somewhat familiar with the
concept of TCP sockets.

Getting ready
You will need a text editor and a telephone connected to FreeSWITCH as well as access to
the fs_cli for your system. You will also need to have the ESL compiled and working for
your scripting language of choice (see Setting up the event socket Library (ESL) earlier in
this chapter). The language used in this is example is Perl, however the principles apply to all
ESL-enabled languages. When we are through we will have a simple script that will listen for
a socket connection from FreeSWITCH, answer the call, play a file, wait for a DTMF digit, and
then exit.

How to do it...
Start by creating an extension for us to dial:

1. Open conf/dialplan/default/01_Custom.xml in a text editor and add this
simple extension:
 <extension name="outbound event socket">
 <condition field="destination_number" data="^(5004)$">
 <action application="socket" data="127.0.0.1:8040"/>
 </condition>
 </extension>

2. Save the file and exit. Issue the reloadxml command or press F6 at the fs_cli.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

73

Now create the script:

1. Create the file scripts/outbound_socket.pl in a text editor and add these lines:
#!/usr/bin/perl
require ESL;
use IO::Socket::INET;

my $ip = "127.0.0.1";
my $sock = new IO::Socket::INET (LocalHost => $ip,
 LocalPort => '8040',
 Proto => 'tcp',
 Listen => 1,
 Reuse => 1);
die "Could not create socket: $!\n" unless $sock;

for(;;) {
 my $new_sock = $sock->accept();
 my $pid = fork();
 if ($pid) {
 print "New child pid $pid created...\n";
 close($new_sock);
 next;
 }

 my $fd = fileno($new_sock);
 my $con = new ESL::ESLconnection($fd);
 my $info = $con->getInfo();
 my $uuid = $info->getHeader("unique-id");

 printf "Connected call %s, from %s\n", $uuid,
 $info->getHeader("caller-caller-id-number");

 $con->sendRecv("myevents $uuid");
 $con->execute("answer");
 $con->execute("start_dtmf");
 $con->execute("playback",
 "ivr/ivr-welcome_to_freeswitch.wav");
 $con->execute("sleep","500");
 $con->execute("playback",
 "ivr/ivr-finished_pound_hash_key.wav");

 while($con->connected()) {
 my $e = $con->recvEvent();
 if ($e) {
 my $name = $e->getHeader("event-name");

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

74

 print "EVENT [$name]\n";
 if ($name eq "DTMF") {
 my $digit = $e->getHeader("dtmf-digit");
 my $duration = $e->getHeader("dtmf-duration");
 print "DTMF digit $digit ($duration)\n";
 $con->execute("hangup");
 }
 }
 }
 print "BYE\n";
 close($new_sock);
}

2. Save the file and exit.

3. Linux/Unix users make the script executable with this command:
chmod +x outbound_socket.pl

4. Launch the script:

Linux/Unix: ./outbound_socket.pl

Windows: perl.exe outbound_socket.pl

5. The script is now waiting for a connection. Dial 5004 from your phone and watch the
script's output to see what it is doing.

How it works...
The script opens a "socket listener" on the local host IP address of 127.0.0.1 and TCP port
8040. When you call 5004, it executes the socket application, which quite literally sends
control of the call over to port 8040. The socket application has no idea what is listening on
that port or even if there is anything listening (try dialing 5004 without the script running).

Once the socket connection is opened, the Perl script "forks" a "child process" and continues
to listen for further connections (if we didn't do this then the script would exit after the first
call it handled and we would need to restart it after each call). If the fork is successful then
the new child process executes the code starting with this line:

 my $fd = fileno($new_sock);

Most of these lines are fairly obvious, but a few of them warrant some explanation. Let's start
with these lines:

 my $fd = fileno($new_sock);
 my $con = new ESL::ESLconnection($fd);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

75

The $fd variable is a file descriptor for the socket connection that is opened. It is passed in to
the new method of the ESL::ESLconnection object class to ensure that the $con object is
communicating with the correct TCP stream from FreeSWITCH. Once we have the connection
object ($con) we then get some information from it with these lines:

 my $info = $con->getInfo();
 my $uuid = $info->getHeader("unique-id");

The $info object is a representation of the initial burst of information that FreeSWITCH sends
to the script when the socket connection is first established. The $uuid variable is populated
with the call leg's UUID, which is found in the unique-id header of the $info object.

This line is important for outbound socket connections:

 $con->sendRecv("myevents $uuid");

The myevents command is a special event socket directive that tells FreeSWITCH that this
particular socket session will receive events only for this call leg. In effect, it filters out all
FreeSWITCH events that do not pertain to this particular call leg. The sendRecv method
sends an event socket command and waits for a response. Note that sendRecv is very
different from the execute method. The execute method executes a dialplan application,
whereas the sendRecv command sends an event socket command.

We use the execute method to play a few sound files and then we enter this important
while loop:

 while($con->connected()) {
 my $e = $con->recvEvent();
 if ($e) {
 ...
 }
 }
 }

This control structure checks two things: the status of the connection and whether or not an
event has been received. If the caller hangs up then $con->connected() will evaluate to
false and the script will exit. Also, if the user presses a touch tone then the script will receive
an event. The script is receiving other events as well, but we ignore anything that is not a
DTMF key press.

Finally, if we receive an event then the $e object is populated and now we can check to see if
it is a DTMF event:

 my $name = $e->getHeader("event-name");
 print "EVENT [$name]\n";
 if ($name eq "DTMF") {

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

76

For each event received we print out the name of the event, however, we only act upon
receiving a DTMF event. We display some information about the DTMF that was received and
then hang up the call.

There's more...
When the event socket connection is first made, FreeSWITCH sends an initial burst of
information to the script. To see what this looks like, add this line right after the printf line:

print $info->serialize();

Make the call to 5004 again while watching the script's output. You will see that there is a
tremendous amount of information that FreeSWITCH sends when the call is first established.
Use the getHeader() method to retrieve a specific value from the $info object like we did
with unique-id.

See also
 f For an alternative way of handling multiple connections, see the Using fs_ivrd to

manage outbound connections recipe in this chapter, which discusses a special
utility to make the job easier

 f Also refer to the Setting up the event socket library and Using the ESL connection
object for call control recipes in this chapter

Using fs_ivrd to manage outbound
connections

FreeSWITCH supplies a tool that offers a simplified means of creating interactive scripts.
Unlike the socket application presented in Using the ESL connection object for call control
in this chapter, using fs_ivrd relieves the programmer from having to maintain socket
connections and handle child processes. The fs_ivrd tool provides a simple interface
using the STDIN and STDOUT file handles. The example Perl script presented here uses the
ESL::IVR Perl module supplied with ESL. As of this writing there had not been any other
fs_ivrd modules written for any of the other scripting languages.

Getting ready
This example requires that the ESL Perl module be properly compiled. See Setting up the
event socket library earlier in this chapter. Also, it is helpful to have at least two terminal
windows open so that you can view the script as well as fs_cli. Note: fs_ivrd is not
supported in Windows environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

77

How to do it...
First, add a new extension to your dialplan by following these steps:

1. Edit or create a new file in conf/dialplan/default/ named 01_event_
socket.xml.

2. Add this extension to the new file:
 <extension name="fs_ivrd Example">
 <condition field="destination_number" expression="^(9950)$">
 <action application="log"
 data="INFO Starting fs_ivrd example..."/>
 <action application="set" data=
 "ivr_path=/usr/local/freeswitch/scripts/ivrd-example.pl"
 />
 <action application="socket" data="127.0.0.1:9090 full"/>
 </condition>
 </extension>

3. Save the file, exit, then issue reloadxml or press F6 at the fs_cli prompt.

This extension will call your fs_ivrd script when the user dials 9950. Create the following
script or download it from the Packt Publishing website:

1. Create a new file in scripts/ called ivrd-example.pl.

2. Add the following lines:
#!/usr/bin/perl
use strict;
use warnings;
use ESL::IVR;

$| = 1; # Turn off buffering
select STDERR; # Use this stream for console output
print "Starting ivrd-example.pl...\n\n";

my $con = new ESL::IVR;
my $uuid = $con->{_uuid};
my $dest = $con->getVar('destination_number');

$con->execute('answer');
$con->execute('sleep','500');
$con->playback('ivr/ivr-welcome_to_freeswitch.wav');
my $digits = "1";
my $prompt = 'file_string://voicemail/vm-to_exit.wav';
$prompt .= '!voicemail/vm-press.wav!digits/9.wav';

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

78

my $badinput = 'ivr/ivr-that_was_an_invalid_entry.wav';

while($con->{_esl}->connected()) {
 while ($con->{_esl}->connected() && $digits != "9") {
 $con->playAndGetDigits(
 "1 1 3 5000 # $prompt $badinput mydigits \\d+");
 $digits = $con->getVar('mydigits');
 print "Received digit $digits\n";
 $con->playback("ivr/ivr-you_entered.wav");
 $con->execute("say","en number pronounced $digits");
 $con->execute("sleep","1000");
 if ($digits == "9") {
 $con->playback('voicemail/vm-goodbye.wav');
 }
 }
 $con->execute("hangup");
}

3. Save the file and exit.

4. Make the file executable with this command:
chmod +x ivrd-example.pl

5. Lastly, we need to launch the fs_ivrd daemon with this command:
/usr/local/freeswitch/bin/fs_ivrd –h 127.0.0.1 –p 9090

6. Test the script by dialing 9950 and following the prompts.

How it works...
The fs_ivrd daemon runs constantly. In fact, you can run it in the background using
whatever "bg" command is appropriate for your platform. When it receives a socket connection
from FreeSWITCH it launches whatever script is specified in the ivr_path channel variable
and handles all inter-process communications. The ivrd-example.pl script simply
establishes an ESL connection using the ESL::IVR module. The resulting $con object is a
superset of the standard ESL connection object.

Once the connection is made, the actual call control is quite simple: we answer the call,
pause, then greet the caller. We then enter an outer while loop that detects whether or not
the caller has hung up. The inner while loop checks for two conditions:

 f Whether or not the caller hung up

 f Whether the caller dialed 9

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

79

If either case is true then the script exits, otherwise we simply ask the caller to press a digit,
read it back, and loop around again.

Building custom, interactive call control scripts with ESL::IVR is all but trivial. Simply use
the ivrd-example.pl script as a template. Note that your script can also use any other Perl
modules available on your system, such as the DBI module for database access.

See also
 f The Establishing an outbound event socket connection and Using the ESL connection

object for call control recipes in this chapter

Filtering events
Events are the lifeblood of the FreeSWITCH eventing system. FreeSWITCH throws events for
virtually everything that happens. This can overwhelm a program (and indeed the programmer)
with a flood of information. The solution is to use the FreeSWITCH event filter feature.

Getting ready
Learning about filters is very simple. Initially we will just use fs_cli connected to a
FreeSWITCH server. Later we will look at some simple programming examples using ESL. You
will need a phone connected to your FreeSWITCH server, and two terminal windows open so
that you can look at your program in one session and fs_cli in another.

How to do it...
Consider a simple example. Here we will compare the event socket output before and after
using a filter:

1. Launch fs_cli and connect to a running FreeSWITCH server. Issue these two
commands at fs_cli:
/log 0

/event plain all

2. Wait a few seconds and no doubt you'll see some events, and possibly a lot of events.

3. From your phone, dial *98 and wait for the system to answer, then hang up. You
should see many events.

4. Let's filter out everything except the channel hang up events. Issue this command:
/filter Event-Name CHANNEL_HANGUP_COMPLETE

5. Repeat the call to *98, then hang up. You should see only a single event.

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

80

How it works...
FreeSWITCH uses a "filter in" system (as opposed to a "filter out" system) for filtering events.
If no filters have been set then the event socket shows all events. The command we issued
means, in effect, "Show all CHANNEL_HANGUP_COMPLETE events". You may set additional
filters. For example:

/filter Event-Name CHANNEL_HANGUP_COMPLETE

/filter Event-Name CHANNEL_EXECUTE

These commands add two filters. In effect, they mean, "Show all CHANNEL_HANGUP_
COMPLETE events and all CHANNEL_EXECUTE events". There is no limit to the number of
filters you may set on an event socket connection.

The fs_cli is useful for looking at simple events and doing some basic debugging, but in
practice you probably will need to apply filters from within a program.

Consider this functional Perl script:

use ESL;
my $con = new ESL::ESLconnection("localhost", "8021", "ClueCon");
if (!$con) {
 die "Unable to connect to FreeSWITCH server; $!\n";
}
$con->events('plain','all');
while (1) {
my $e = $con->recvEventTimed(10);
next unless $e;
print $e->serialize();
}

Though not particularly useful, this Perl script demonstrates how to connect to the
FreeSWITCH event socket using ESL and listen for events. When it receives an event it will
print it to the console. The $con variable is the ESL connection object and $e is an event
object. Run this script on your system and you will see that it dumps every event. Let's add a
filter and a few strategic print statements. Modify the script as follows:

$con->events('plain','all');
$con->filter('Event-Name','CHANNEL_STATE');

while (1) {
 my $e = $con->recvEventTimed(10);
 next unless $e;
 my $chan_state = $e->getHeader('Channel-State');

 my $chan_call_state = $e->getHeader('Channel-Call-State');

 my $chan_leg = $e->getHeader('Call-Direction') eq 'inbound' ? 'A' :
 'B';

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

81

 my $chan_name = $e->getHeader('Channel-Name');

 print "($chan_leg Leg) $chan_state / $chan_call_state
 [$chan_name]\n";

}

First, note that we add a filter on CHANNEL_STATE events. This will let us receive only events
when there is a state change on a channel, for example, when a channel goes from "ringing"
to "answered". We also create several Perl variables:

Variable Purpose
$chan_state Channel state (NEW, INIT, ROUTING)
$chan_call_state Call state (RINGING, ACTIVE, HANGUP, DOWN)
$chan_leg Call leg (A leg or B leg)
$chan_name Channel name

Run this script on your system and then make a call from one phone to another. Watch the
output while the target phone is ringing, then when the target phone is answered, and finally
when one of the phones hangs up. Observing this process will help you grasp the types of
events that FreeSWITCH throws as calls traverse the system.

See also
 f The Setting up the event socket library recipe earlier in this chapter

Launching a call with an inbound event
socket connection

Using an inbound event socket connection to launch a call is a common requirement for
some applications, such as outbound IVRs. In a case like this it is advantageous to handle the
generating of the calls in a non-blocking manner using the ESL connection object's bgapi()
method. This recipe discusses how to use the bgapi() method with the corresponding
"Background-Job UUID".

Getting ready
Be sure that you have configured ESL for your system and that you have followed the steps in
Establishing an inbound event socket connection earlier in this chapter. The examples here
are written in Perl but the principles apply to any ESL-enabled language. Of course, you will
need a text editor and a SIP phone registered to your FreeSWITCH server in order to test
this example.

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

82

How to do it...
Start by creating the new script:

1. Create the file scripts/ib_bgapi.pl in a text editor and add these lines:
#!/usr/bin/perl
use strict;
use warnings;
require ESL;

my $host = "localhost";
my $port = "8021";
my $pass = "ClueCon";
my $con = new ESL::ESLconnection($host, $port, $pass);
if (! $con) { die "Unable to establish connection to
$host:$port\n"; }
$con->events("plain","all");

my $target = shift;
my $uuid = $con->api("create_uuid")->getBody();
my $res =
 $con->bgapi("originate","{origination_uuid=$uuid}$target 9664");
my $job_uuid = $res->getHeader("Job-UUID");
print "Call to $target has Job-UUID of $job_uuid and call uuid of
$uuid \n";

my $stay_connected = 1;
while ($stay_connected) {
 my $e = $con->recvEventTimed(0);
 if ($e) {
 my $ev_name = $e->getHeader("Event-Name");
 if ($ev_name eq 'BACKGROUND_JOB') {
 my $call_result = $e->getBody();
 print "Result of call to $target was $call_result\n\n";
 } elsif ($ev_name eq 'DTMF') {
 my $digit = $e->getHeader("DTMF-Digit");
 print "Received DTMF digit: $digit\n";
 if ($digit =~ m/\D/) {
 print "Exiting...\n";
 $stay_connected = 0;
 }
 } else {
 # Some other event
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

83

 } else {
 # do other things while waiting for events...
 }
}
$con->api("uuid_kill",$uuid);

2. Save the file and exit.

3. Linux/Unix users make the script executable with this command:
chmod +x ib_bgapi.pl

4. Launch the script:

Linux/Unix: ./ib_bgapi.pl user/1000

Windows: perl.exe ib_bgapi.pl user/1000

Be sure to replace "1000" with the extension number for your phone. Your phone should ring;
when you answer you will hear music. Watch the console as you answer the call and press
DTMF digits. Press * or # to exit the script.

How it works...
This script takes a dialstring as an argument on the command line and then makes a bgapi
("background API") origination attempt to that dialstring. Whenever bgapi is called there will
always be a "Job-UUID" response. The bgapi command is discussed a little later. We use the
uuid_create method of the ESL connection object to create a UUID that we can assign to
our outbound call leg. Normally FreeSWITCH will assign a UUID value to each call leg, however
by preselecting the UUID value we save ourselves some extra (unnecessary) parsing of events
to try to decipher the UUID.

At this point we generate the outbound call, print some information about the call, and then
enter our main event loop. Note these two lines:

my $stay_connected = 1;
while ($stay_connected) {

The $stay_connected variable is simply a flag, and as long as it evaluates to true then the
event loop keeps running. The script then polls the event socket for events:

 my $e = $con->recvEventTimed(0);

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

84

The argument to recvEventTimed is the number of milliseconds to block while waiting for
an event. By setting it to zero we are simply checking to see if there are events waiting in the
event queue. The $e variable will evaluate to false if there were no events waiting:

 if ($e) {
 ...
 } else {
 # do other things while waiting for events...
 }

The else block of this if statement can be used to let your code handle other operations
while you are waiting for events to come. If an event does come in we have this if block to
check the type of event:

 my $ev_name = $e->getHeader("Event-Name");
 if ($ev_name eq 'BACKGROUND_JOB') {

 my $call_result = $e->getBody();
 print "Result of call to $target was $call_result\n\n";
 } elsif ($ev_name eq 'DTMF') {

 my $digit = $e->getHeader("DTMF-Digit");
 print "Received DTMF digit: $digit\n";
 if ($digit =~ m/\D/) {
 print "Exiting...\n";
 $stay_connected = 0;
 }
 } else {
 # Some other event
 }

We examine the event name for BACKGROUND_JOB or DTMF in the if and elsif checks
(highlighted). We also have a bare else block where we can handle events of other types if
we choose to do so. When we receive our BACKGROUND_JOB event we display the result of
the originate command. The rest of the script is spent in the event loop waiting for DTMF
events. When a DTMF event comes in we display the key that the caller pressed. If the key
is not a digit (* or #) then the script will exit, otherwise the event loop keeps on processing.
Note: we explicitly hang up the channel using the uuid_kill command.

There's more...
You can learn more about the mechanics of using bgapi by issuing some simple commands
at the fs_cli. Open an fs_cli session and try these commands:

/log 0

bgapi status

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

85

You will see a reply, something like this:

+OK Job-UUID: f719939a-ffa1-49ca-a8b6-7f080febc2dc

You can manually watch for BACKGROUND_JOB events with this fs_cli command:

/event plain background_job

Now issue another bgapi status command. In addition to the reply you will also see the
actual BACKGROUND_JOB event. An abbreviated event looks like this:

Event-Name: [BACKGROUND_JOB]

...

Job-UUID: [f719939a-ffa1-49ca-a8b6-7f080febc2dc]

Job-Command: [status]

Content-Length: [177]

Content-Length: 177

UP 0 years, 0 days, 0 hours, 15 minutes, 2 seconds, 165 milliseconds, 501
microseconds

1 session(s) since startup

0 session(s) 0/90

1000 session(s) max

min idle cpu 0.00/100.00

The status command returns the BACKGROUND_JOB event immediately. However, the
originate command will not return a BACKGROUND_JOB event until the originate API has
succeeded (the call is answered) or fails (a busy, no answer, and so on). Try it with your phone:

bgapi originate user/1000 9664

Replace 1000 with the extension number of your phone. You will get the +OK reply back
immediately, but you won't get the BACKGROUND_JOB event until the call is answered or goes
to voicemail. One thing to keep in mind is that by default, if the far end sends back early
media then the originate is considered successful, even if that early media is a busy signal,
special information tone (SIT), or a ring with no-answer.

See also
 f The Setting up the event socket library, Establishing an inbound event socket

connection, and Getting familiar with the fs_cli interface recipes in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

86

Using the ESL connection object for call
control

Sometimes it is convenient (or even necessary) to control a call from a script. In such cases
you can use the ESL connection object to control a call from an ESL script. This recipe will
demonstrate a simple script that will answer a call, play a prompt, accept some caller input,
and then route the call based upon that input. With these basic concepts demonstrated you
will then be able to write custom scripts that meet your specific needs.

Getting ready
This recipe is an example of an "outbound" connection from the FreeSWITCH dialplan to an
ESL script. As such, you should read Establishing an outbound socket connection earlier in
this chapter. This recipe will require at least two terminal windows: one for fs_cli and one
for the script. Although the script presented here is written in Perl, the connection object
applies to all ESL-enabled languages.

How to do it...
First, add a new extension to your dialplan by following these steps:

1. Edit or create a new file in conf/dialplan/default/ named 01_event_
socket.xml.

2. Add this extension to the new file:
 <extension name="ESL Con Obj Example">
 <condition field="destination_number" expression="^(996\d)$">
 <action application="log"
 data="INFO Starting ESL connection object example"/>
 <action application="socket"
 data="127.0.0.1:8040 sync full"/>
 </condition>
 </extension>

3. Save the file, exit, then issue reloadxml or press F6 at the fs_cli prompt.

This extension will call your event socket script when the user dials 9960. Create the following
script or download it from the Packt Publishing website:

1. Create a new file in scripts/ called con_obj_example.pl.

2. Add these lines:
#!/usr/bin/perl
use strict;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

87

use warnings;
require ESL;
use IO::Socket::INET;
my $ip = "127.0.0.1";
my $sock = new IO::Socket::INET (LocalHost => $ip,
 LocalPort => '8040',
 Proto => 'tcp',
 Listen => 1,
 Reuse => 1);
die "Could not create socket: $!\n" unless $sock;
for(;;) {
 my $new_sock = $sock->accept();
 my $pid = fork();
 if ($pid > 0) {
 close($new_sock);
 next;
 } elsif ($pid == 0) {
 my $host = $new_sock->sockhost();
 my $fd = fileno($new_sock);
 my $con = new ESL::ESLconnection($fd);
 my $info = $con->getInfo();
 my $uuid = $info->getHeader("unique-id");
 my $prompt = 'file_string://voicemail/vm-to_exit.wav';
 $prompt .= '!voicemail/vm-press.wav!digits/9.wav';
 $prompt .= ' ivr/ivr-that_was_an_invalid_entry.wav';
 $con->execute("answer");
 $con->execute("playback",
 "ivr/ivr-welcome_to_freeswitch.wav");
 my $digits = "1";
 while($con->connected()) {
 while ($digits != "9" && $con->connected()) {
 $con->execute("play_and_get_digits",
 "1 1 3 5000 # $prompt mydigits \\d+");
 my $e = $con->api("uuid_getvar","$uuid mydigits");
 $digits = $e->getBody();
 print "Received digit $digits\n";
 $con->execute("sleep","1000");
 $con->execute("playback","ivr/ivr-you_entered.wav");
 $con->execute("say","en number pronounced $digits");
 $con->execute("sleep","1000");
 if ($digits == "9") {
 $con->execute("playback","voicemail/vm-goodbye.wav");
 }
 }
 $con->execute("hangup");

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

88

 }
 close($new_sock);
 exit(0);
 } else {
 die "Error forking new process: $!\n";
 }
}

3. Save the file and exit.

4. Make the script executable:
chmod +x con_obj_example.pl

5. Run the script with this command:
./con_obj_example.pl

6. Once the script is running dial 9960 and follow the voice prompts.

How it works...
This script runs constantly—a daemon in Unix parlance—and waits for socket connections
from FreeSWITCH on port 8040. As soon as a socket connection is established, the script
forks a child process. This child process then creates the ESL connection object $con.
Once the $con object is created we say a greeting to the caller and then enter the outer
while loop. This loop causes the script to exit if the caller hangs up. The inner while loop
uses the play_and_get_digits application to actually play the prompt and collect the
digits from the caller. We then read back to the caller the digit he or she pressed using the
say application. Finally, if the caller dialed the digit 9 then we say "goodbye", and then hang
up. The child process then exits but the parent (the daemon) is still running. You can have
multiple simultaneous calls in existence and each one will get its own process.

You can use this script as a template for creating your own interactive dialogs. All of the caller
interactions take place within the inner while loop, so focus your attention there. Also, if
you plan to play various sound prompts to the caller be sure to review the recipe Use phrase
macros to build sound prompts in Chapter 5.

See also
 f The Setting up the event socket library, Establishing an outbound event socket

connection, and Using fs_ivrd to manage outbound connections recipes in
this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

89

Using the built-in web interface
FreeSWITCH comes with a built-in web interface. It is made available by mod_xml_rpc, which
is not loaded by default and therefore sometimes goes unnoticed.

Getting ready
You will need to make sure that mod_xml_rpc is built and loaded before trying to connect
to the web interface. The mod_xml_rpc module is already compiled when using the Visual
Studio 2008/2010 solution files with the FreeSWITCH source code. Linux and Mac OS X users
will need to enable mod_xml_rpc in your FreeSWITCH installation. Follow these steps:

1. Open modules.conf in the FreeSWITCH source directory and remove the comment
on the #xml_int/mod_xml_rpc line. Save the file and exit

2. Compile mod_xml_rpc with this command:
make mod_xml_rpc-install

3. If you want to have mod_xml_rpc load automatically each time you start
FreeSWITCH then edit conf/autoload_configs/modules.conf.xml and
uncomment this line:
<!-- <load module=" mod_xml_rpc "/> -->

Save the file and exit.

4. If you do not load mod_xml_rpc automatically then simply load it with this command
from fs_cli:
load mod_xml_rpc

Once mod_xml_rpc is loaded you are ready to start using the web interface.

How to do it...
Follow these steps:

1. Connect to the web interface with a browser by opening a URL like
http://x.x.x.x:8080, where x.x.x.x is the IP address of your
FreeSWITCH server.

www.it-ebooks.info

http://www.it-ebooks.info/

External Control

90

By default, the interface uses port 8080. When the server asks for a username and
password enter "freeswitch" and "works" respectively. You will see a simple page
displayed like this:

The files listed here are for the included Adobe Flash-based media player that lets you
listen to audio sound files right from your browser and are not of particular note.

2. Let's send a simple command to FreeSWITCH. The syntax for sending a commands is:
http://x.x.x.x:8080/webapi/cmd?args, where x.x.x.x is the IP address of
FreeSWITCH, cmd is the API command to send, and args represents any arguments
to the command. Assuming your IP address is 127.0.0.1, you can get the status of
FreeSWITCH with the URL http://127.0.0.1:8080/webapi/status.

3. To view calls in progress use the URL http://127.0.0.1:8080/webapi/
show?channels.

Any API command that you can type at fs_cli can also be sent via the web interface.

How it works...
FreeSWITCH features a clever design which anticipates the possibility that commands have
been issued from the web-based interface instead of from the console or fs_cli utility.
Commands that are "Web aware" will respond with HTML-formatted data. For example, the
help command will respond with formatted output. Try sending this command from your
browser: http://127.0.0.1:8080/webapi/help. Notice the table and alternating
background colors. The help command is one of these "web-aware" commands. Note that
not all commands are like this, so if you issue a command and the response does not seem
formatted properly then try the api or txtapi alternatives. (The api method uses some
formatting for the output whereas txtapi simply does a raw text dump for the output.)
To get an idea of the differences, issue each of these commands and see the response:
http://127.0.0.1:8080/api/help and http://127.0.0.1:8080/txtapi/help.
You have a number of options for sending and receiving data using the built-in web server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

91

Be sure to change the default username and password before putting
this feature into production. Look for the parameters auth-user and
auth-pass in conf/autoload_configs/xml_rpc.conf.xml.

There's more...
The built-in web server is used for several interesting features.

Controlling PortAudio
If you have mod_portaudio installed then you will be happy to learn that there is a web
interface for it. Browse to this URL http://127.0.0.1:8080/webapi/pa to see a
simple form. While not particularly elegant, it demonstrates an alternative to using
fs_cli to issue various pa commands. See Using FreeSWITCH as a softphone in
Chapter 2 for more information.

The "XML RPC" In mod_xml_rpc
This recipe has focused entirely on using a web browser to communicate with FreeSWITCH.
However, it is entirely possible to use traditional XML RPC clients in various programming
languages. If you are familiar with XML RPC programming then we recommend that you visit
http://wiki.freeswitch.org/wiki/Freeswitch_XML-RPC to see some specific
examples on using XML RPC. There is even an example for Drupal!

See also
 f The Listening to live calls with telecast and Using voicemail recipes in Chapter 5

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
PBX Functionality

In this chapter, we will cover:

 f Creating users

 f Accessing voicemail

 f Company directory

 f Using phrase macros to build voice prompts

 f Creating XML IVR menus

 f Music on hold

 f Creating conferences

 f Sending faxes

 f Receiving faxes

 f Basic text-to-speech with mod_flite

 f Advanced text-to-speech with mod_tts_commandline

 f Listening to live calls with telecast

 f Recording calls

Introduction
FreeSWITCH supports many features that are typically associated with a telephone system or
Private Branch Exchange (PBX). The recipes in this chapter focus on a number of functions
that are widely used in PBX systems such as voicemail, faxing, call recording, IVR menus,
and more.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

94

Historically, the term PBX refers to a specific type of telephone
system. However, it is now commonly used as a general term
for any type of telephone system.

Creating users
Each FreeSWITCH system has a directory of users. In most cases a user is the literal person
who has a telephone. When we say that we are "adding a user" we mean that we are creating
a user account in the directory of users. Each "user" has the SIP credentials for making
outbound calls as well as a PIN number for accessing voicemail. In fact, you cannot have a
voicemail box without having a corresponding user account.

Getting ready
At a minimum you will need a terminal window to issue commands to your system. To use the
add_user script your system will need to have Perl installed.

How to do it...
There are two basic steps for creating a user. The steps are as follows:

1. Adding the user to the directory.

2. Adding the corresponding extension number to the dialplan.

Let's assume we have a fresh installation of FreeSWITCH, which means we have user ID's
1000 through 1019 (the Local_Extension in conf/dialplan/default.xml is set to
route calls to those ID's).

Let's add a new user with these steps:

1. Open your terminal and cd into your FreeSWITCH source directory.

2. Linux users issue this command: ./scripts/perl/add_user 1020.

3. Windows users do this: perl scripts\perl\add_user 1020.

You should see some output confirming the new user is created. Next we need to modify the
Local_Extension in the default context. Perform these steps:

1. Open conf/dialplan/default.xml in a text editor.

2. Locate the dialplan extension named Local_Extension.

3. Change the expression from ^(10[01][0-9])$ to ^(10[012][0-9])$.

4. Save the file and exit. Then issue a reloadxml command from the fs_cli.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

95

User 1020 is now ready for use. To test, have a SIP phone register as user "1020" and then
call it from another phone.

How it works...
The add_user script simply adds a new file in the directory. In the case of user ID 1020, it
literally created the file conf/directory/default/1020.xml. Once that file is created
(and you've issued a reloadxml command) then a SIP phone can register as that user.
However, the dialplan isn't by default set up to handle someone dialing 1020, which is why we
had to update the Local_Extension in default.xml. The default <condition> for the
Local_Extension is:

<condition field="destination_number" expression="^(10[01][0-9])$">

This pattern matches 1000, 1001, … 1019. We changed the <condition> line to read as
follows:

<condition field="destination_number" expression="^(10[012][0-9])$">

Our new pattern adds 1020, 1021, … 1029 to the Local_Extension. Why the whole
range instead of just "1020"? There is nothing preventing you from doing that, however it is
quite common to add users in blocks and not one at a time. If you prefer, you could use the
following pattern:

<condition field="destination_number" expression="^(10[01][0-
9]|1020)$">

As mentioned, though, this means that if you want to add user 1021 then you would need to
come back and change this regular expression pattern again.

There's more...
The add_users script has many useful features (run add_users --help to see the full
set of options). One such feature is adding a block of users. For example, if we wanted to
complete the block of 1020, 1021, … 1029 we need not run the script for each user to add.
Instead, specify a range with the --users argument:

./scripts/perl/add_user --users=1020-1029

Note that the add_user script will not overwrite existing users.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

96

Regular expressions with Regexp::Assemble
You may have seen a message like this on the screen after running the add_user script:

If CPAN module Regexp::Assemble were installed this program would be able
to suggest a regex for your new users.

If you install the CPAN module Regexp::Assemble then the add_user script will suggest
a regular expression pattern. A quick way to install this module from the command line is by
using the following command:

perl -MCPAN -e 'install Regexp::Assemble'

Now when you add a user the script will suggest a regular expression pattern. Note that this is
merely a suggestion—you should still verify your pattern to make sure it addresses your needs.

See also
 f Refer to the Configuring a SIP phone to register with FreeSWITCH recipe in Chapter 2

Accessing voicemail
Voicemail is a very common feature for PBX systems. This recipe shows how to access
voicemail for a user.

Getting ready
You will need at least one telephone registered on your system, although it is easier to test
with two or more phones. Have another user call. The destination extension should let the call
go to voicemail. The caller should leave a message and hang up. Once a message is left, the
target phone can access voicemail.

How to do it...
The simplest way to access voicemail is to simply dial *98 on the phone. The system will ask
for the user ID and then the password (by default the password is the same as the user ID).
Let's assume that user 1001 is checking her voicemail messages. She would follow
these steps:

1. Dial *98, wait for system to answer.
2. Enter the ID and press # (1001# in our example).
3. Enter the password and press # (1001# in our example).
4. New messages are automatically played.

Simply hang up the phone to exit from voicemail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

97

How it works...
The voicemail system really is nothing more than a specific type of IVR system. In this case the
user can log in and has several choices. The main menu options are as follows:

Key Action
1 Listen to new messages
2 Listen to saved messages
5 Advanced options
Exit voicemail

While listening to new or saved messages the user has these options:

Key Action
1 Listen to the message from the beginning
2 Save message
4 Rewind
6 Fast forward
7 Delete
0 Pause playback
* Skip the envelope information (Date/time and sender)

After the message has been played the options are:

Key Action
1 Listen to the message from the beginning
2 Save message
7 Delete

The advanced menu options are:

Key Action
1 Record greeting
2 Choose greeting
3 Record name
6 Change password
0 Main menu

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

98

Most users will find the FreeSWITCH voicemail system very familiar as it is modelled on the
voicemail systems used by most major mobile phone carriers.

See also
 f Refer to the Configuring a SIP phone to register with FreeSWITCH recipe in Chapter 2

Company directory
Most companies have some form of dial-by-name directory. This recipe will show you how to
add a company directory to your FreeSWITCH installation using mod_directory.

How to do it...
Enable and build mod_directory by following these steps:

1. Open freeswitch_src/modules.conf in a text editor.

2. Uncomment this line:
#applications/mod_directory

3. Save the file and exit.

4. Linux/Unix users issue the proper make command:
make mod_directory-install

Allow mod_directory to be loaded when FreeSWITCH starts:

1. Open conf/autoload_configs/modules.conf.xml in a text editor.

2. Uncomment this line:
<!--<load module="mod_directory"/>-->

3. Save the file and exit.

4. Restart FreeSWITCH.

5. Start fs_cli and issue the command show application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

99

You should see an application named directory in the list. Next we need to add a simple
dialplan extension that will let us test:

1. Open conf/dialplan/default/01_Custom.xml in a text editor.

2. Add these lines:
<extension name="dial by name">
 <condition field="destination_number" expression="^(1411)$">
 <action application="directory" data="default ${domain}"/>
 </condition>
</extension>

3. Save the file and exit.

The last thing to do is to make sure that at least one user in the directory has the
directory_full_name or effective_caller_id_name variable set in the directory
entry. For now we will set the directory_full_name on user 1000:

1. Open conf/directory/default/1000.xml in a text editor.

2. Add this line to the <variables> section:
<variable name="directory_full_name" value="Ada Lovelace"/>

3. Save the file and exit. Press F6 or issue the reloadxml command from fs_cli.

At this point you are ready to test. Dial 1411 from your phone and listen to the options. For
this test, dial the first three letters of the last name (568 for "L-O-V") and listen to the results.

How it works...
The directory application gets its information from the user directory. By using the
directory_full_name variable we specify the first and last names for purposes of
searching the user directory. You can also use the effective_caller_id_name
variable if you wish. The latter variable controls the caller ID name displayed when the user
makes outbound calls. If for any reason this is not the name you want searched then use
directory_full_name, which will always supersede effective_caller_id_name for
dial-by-name searches.

Most likely in your initial test you did not hear someone's voice saying, "Ada Lovelace" but
rather you heard the system spelling out the name. This is how mod_directory handles the
case where the user has not recorded his or her name. If you log in to the voicemail system
and record a name prompt (option 5 from the VM main menu, then option 3) then the system
will use that recording instead of spelling out the user's name.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

100

There's more...
You have two parameters that you can set for each user to customize the behavior of the
directory application:

 f directory-visible: Set this parameter to false to prevent the user from being
included in directory searches. This is useful for keeping the directory from being
cluttered with entries like "hallway phone", and "guest phone". It is also handy for
keeping VIP extensions from being included.

 f directory-exten-visible: Set this parameter to false to prevent the
directory application from voicing the target user's extension number (some
operations prefer to keep extension numbers from being public).

Both of the above parameters default to true, so keep that in mind as you are building your
user database.

See also
 f Refer to the Accessing voicemail and Creating users recipes in this chapter

Using phrase macros to build sound prompts
It is frequently necessary to piece together smaller sound recordings to create longer ones.
The FreeSWITCH phrase macro system is a very powerful tool for not only piecing together
individual sound files, but also for adding a little bit of logic so that your phrases are more
than the mere amalgamation of individual sound prompts.

Getting ready
You will need a text editor and at least one SIP phone for this recipe. It is also recommended
that you review the phrase file for your language. For English this is found in the FreeSWITCH
source directory in docs/phrase/phrase_en.xml. The phrase_en.xml file contains both
the file name of each pre-recorded prompt as well as the actual spoken text. Prompts are
divided into sections such as voicemail, IVR, currency, digits, and time. By far the
largest collection of sound prompts is in the IVR section.

In this recipe we will create a simple dialplan extension that will read back to the caller his
extension number. We will use a phrase macro to handle the work of stitching together sound
prompts and utilizing the say application to read back the caller's extension number.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

101

How to do it...
Start by adding the extension to the dialplan:

1. Create or edit the file conf/dialplan/default/01_Custom.xml.

2. Add these lines:
<extension name="who's calling">
 <condition field="destination_number" expression="^(1500)$">
 <action application="answer"/>
 <action application="playback"
 data="phrase:whoami:${username}"/>
 <action application="hangup"/>
 </condition>
</extension>

3. Save the file and exit.

Next, create the phrase macro:

1. Create or edit the file conf/lang/en/ivr/custom.xml.

2. Add these lines:
<macro name="whoami">
 <input pattern="^(\d+)$">
 <match>
 <action function="play-file"
 data="ivr/ivr-extension_number.wav"/>
 <action function="sleep"
 data="100"/>
 <action function="say"
 data="$1"
 method="pronounced"
 type="number"/>
 </match>
 <nomatch>
 <action function="play-file"
 data="ivr/ivr-that_was_an_invalid_entry.wav"/>
 </nomatch>
 </input>
</macro>

3. Save the file and exit.

4. Issue the reloadxml command (or press F6) at the fs_cli.

Test the new extension by dialing 1500.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

102

How it works...
The key to this operation is this line in the dialplan extension we created:

 <action application="playback"

 data="phrase:whoami:${username}"/>

The playback application normally takes a file name as an argument. However, if the argument
begins with phrase: then playback will look for a phrase macro instead of an audio file. In
this case, we call a phrase macro named whoami and give it the argument of ${username},
which contains the ID number of the calling user. At this point the phrase macro takes control.

The argument passed to the macro gets handled with this line:

 <input pattern="^(\d+)$">

The input value is matched against the regular expression in the pattern option. In most cases
${username} contains only digits, so our pattern will capture those into the special variable
$1. At this point we now have a bit of logic to help decide what to do. If the input matches the
pattern, then the actions inside of the <match> node will be executed. If there is not a match
then the actions inside of the <nomatch> node will be executed (in the rare case of a non-user
calling extension 1500 we simply play a message that says, That was an invalid entry).

You have probably figured out by now that the actions contained inside of the match (or
nomatch) are executed sequentially. You can also see that phrase macros are not merely
limited to playing individual sound files. You can call functions like sleep and say to
customize the way the prompt is played to the user. You can even call a text-to-speech
application if you have one installed.

There's more...
It is possible to execute many different operations using phrase macros. In fact, the
FreeSWITCH voicemail system uses phrase macros extensively. Look through conf/lang/
en/vm/sounds.xml to see all the different phrase macros that mod_voicemail uses.
Keep in mind that you can use any of the phrase macros in sounds.xml as long as you call
them with the correct arguments.

One particularly useful phrase macro is called voicemail_record_file_check. Consider
the case where you are asking the caller to record a prompt. Perhaps you have a custom
application and the caller needs to record a prompt. This macro allows you to have a custom
phrase that says something like "press 1 to listen, press 2 to save, press 3 to re-record." As an
example, you could use play_and_get_digits to tell the caller what to do:

<action application="play_and_get_digits" data="1 1 3 4000 #
phrase:voicemail_record_file_check:1:2:3 ivr/ivr-invalid_entry.wav
selection \d"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

103

The above action would literally tell the caller, "Press 1 to listen to the recording; press 2
to save the recording; press 3 to re-record". It would then capture the input into channel
variable ${selection}. Note that the options voiced to the caller are customizable with
this macro. Calling the macro with phrase:voicemail_record_file_check:4:5:6
would literally tell the caller, "Press 4 to listen to the recording; press 5 to save the recording;
press 6 to re-record".

A good way to learn more about phrase macros is to watch the console while calling in to
voicemail as you will be able to watch in real-time as FreeSWITCH parses the phrase macro
and performs the actions therein.

See also
 f Refer to the Basic text-to-speech with mod_flite and Advanced text-to-speech with

mod_tts_commandline recipes later in this chapter

Creating XML IVR menus
FreeSWITCH has a simple but flexible system for building IVR-style menus for caller interaction.
In this recipe we create a custom menu that is very similar to the demo IVR that is part of the
default FreeSWITCH configuration.

Getting ready
You will need a text editor and a telephone for testing. We will create a custom menu for
extension number 5002 and we will use a generic greeting that comes with the FreeSWITCH
sound files. To use the dial-by-name directory be sure to complete the recipe Company
directory earlier in this chapter.

How to do it...
Create the menu definition by following these steps:

1. Open a text editor and create a new file called conf/ivr_menus/custom_ivr.xml.

2. Add these lines:
<menu name="simple_greeting"
 greet-long="ivr/ivr-generic_greeting.wav"
 greet-short="ivr/ivr-generic_greeting.wav"
 invalid-sound="ivr/ivr-that_was_an_invalid_entry.wav"
 exit-sound="voicemail/vm-goodbye.wav"
 confirm-attempts="3"
 timeout="10000"
 inter-digit-timeout="2000"

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

104

 max-failures="3"
 max-timeouts="3"
 digit-len="4">
 <entry action="menu-exec-app" digits="9"
 param="directory default ${domain}"/>
 <entry action="menu-exec-app"
 digits="/^(10[01][0-9])$/"
 param="transfer $1 XML features"/>
 <entry action="menu-top" digits="*"/>
</menu>

3. Save the file.

Next, create a simple extension that lets us test our menu:

1. Open conf/dialplan/default/01_Custom.xml in a text editor.

2. Add this extension:
<extension name="sample greeting">
 <!-- Good morning 12am to 11:59 -->
 <condition hour="0-11" break="never">
 <action application="set" data="tod=morning" inline="true"/>
 </condition>
 <!-- Good afternoon 12pm to 17:59 -->
 <condition hour="12-17" break="never">
 <action application="set" data="tod=afternoon" inline="true"/>
 </condition>
 <!-- Good morning 18:00 to 23:59 -->
 <condition hour="18-23" break="never">
 <action application="set" data="tod=evening" inline="true"/>
 </condition>
 <condition field="destination_number" expression="^5002$">
 <action application="answer"/>
 <action application="sleep" data="1000"/>
 <action application="playback"
 data="ivr/ivrgood_${tod}.wav"/>
 <action application="sleep" data="500"/>
 <action application="ivr" data="simple_greeting"/>
 </condition>
</extension>

3. Save the file and exit.

4. Issue the reloadxml command (or press F6) at the fs_cli.

Test your new extension by dialing 5002.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

105

How it works...
While this is a minimal example of creating a menu, it is still a very useful example of how to
create a simple "main greeting" for a company's PBX.

There's more...
Many times it is beneficial to use a phrase macro with an IVR menu. For example, in our
dialplan we manually compute the time of day and voice it to the caller. We then launch the
ivr application with our generic greeting. This is not optimal for a few reasons. First off,
having a simple .wav file for our greeting means that we are stuck with whatever is recorded.
Secondly, using a phrase macro gives us a bit more flexibility in how we use our macros. Let's
improve our menu by using a phrase macro. Our goals will be as follows:

 f Add "To repeat these options, press *" to our greeting

 f Skip the "Good morning/afternoon/evening" when repeating our options

 f Clean up the readability of our dialplan

As you will see, using a phrase macro accomplishes all of this and more. First, let's clean up
the dialplan. Open conf/dialplan/default/01_Custom.xml and edit our extension so
that it has only these lines:

<extension name="sample greeting">
 <condition field="destination_number" expression="^5002$">
 <action application="answer"/>
 <action application="ivr" data="simple_greeting"/>
 </condition>
</extension>

Now let's create a separate extension that always gets executed at the beginning of the
dialplan. Normally you do this at the beginning of the default context. Open conf/
dialplan/default.xml and add this as the first extension in the default context:

<extension name="set_tod" continue="true">
 <!-- Good morning 12am to 11:59 -->
 <condition hour="0-11" break="never">
 <action application="set"
 data="tod=morning"
 inline="true"/>
 </condition>
 <!-- Good afternoon 12pm to 17:59 -->
 <condition hour="12-17" break="never">
 <action application="set"
 data="tod=afternoon"
 inline="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

106

 </condition>
 <!-- Good morning 18:00 to 23:59 -->
 <condition hour="18-23" break="never">
 <action application="set"
 data="tod=evening"
 inline="true"/>
 </condition>
</extension>

Adding this extension to the dialplan allows all calls in the default context to have the tod
channel variable set. This in turn lets any extension (or script, or phrase macro) have access
to tod, not just our custom extension.

Next, open conf/ivr_menus/custom_ivr.xml and change these two lines to use
our macro:

 greet-long="phrase:simple_greeting:long"
 greet-short="phrase:simple_greeting:short"

Finally, add the new macro. It's a bit long, however it accomplishes a lot for us. Open conf/
lang/en/ivr/custom.xml and add a new macro:

<macro name="simple_greeting">
 <input pattern="^(long)$" break-on-match="true">
 <match>
 <action function="sleep"
 data="1000"/>
 <action function="play-file"
 data="ivr/ivr-good_${tod}.wav"/>
 <action function="sleep"
 data="500"/>
 <action function="play-file"
 data="ivr/ivr-generic_greeting.wav"/>
 <action function="sleep"
 data="500"/>
 <action function="play-file"
 data="ivr/ivr-to_repeat_these_options.wav"/>
 <action function="sleep"
 data="250"/>
 <action function="play-file"
 data="voicemail/vm-press.wav"/>
 <action function="sleep"
 data="100"/>
 <action function="play-file"
 data="ascii/42.wav"/>
 </match>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

107

 </input>
 <input pattern="^(short)$">
 <match>
 <action function="play-file"
 data="ivr/ivr-generic_greeting.wav"/>
 <action function="sleep"
 data="500"/>
 <action function="play-file"
 data="ivr/ivr-to_repeat_these_options.wav"/>
 <action function="sleep"
 data="250"/>
 <action function="play-file"
 data="voicemail/vm-press.wav"/>
 <action function="sleep"
 data="100"/>
 <action function="play-file"
 data="ascii/42.wav"/>
 </match>
 </input>
</macro>

After saving all of the files press F6 or issue the reloadxml command from fs_cli. Try
calling 5002 and this time press * to repeat the options. On a repeat, the system will not say,
"Good morning", and so on. In addition to being more functional, the phrase macro method
also makes it easier for you to make changes to the greeting that you play to your callers.

See also
 f Refer to the Company directory recipe earlier in this chapter

Music on hold
Music on hold (MOH) is a common feature of modern phone systems. FreeSWITCH allows you
to have many different MOH selections.

Getting ready
You will need some music files if you wish to customize the MOH. Also, if you have MP3 files
that you would like to use for MOH then you will need a utility that can convert them into
standard WAV files. A freely available tool can be found at http://www.mpg123.de. You will
also need a text editor and a telephone connected to your FreeSWITCH server.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

108

How to do it...
The first thing to do is to install the default MOH files from the FreeSWITCH download site. The
Linux/Unix users can issue the following command from the FreeSWITCH source directory:

make cd-moh-install

On Windows, the sound files are installed automatically as part of the MSVC solution file.

Once the sounds are installed you can confirm that they work by dialing 9664 (no reloadxml
or system restart is necessary).

How it works...
The make command issued above installs the MOH files in 8 kHz, 16 kHz, 32 kHz, and 48 kHz
sampling rates (the Windows build automatically installs these as well). The default dialplan
extension number 9664 (9MOH) will play the default music on hold files to the caller. The
music is supplied by the module mod_file_stream. It is possible to customize the MOH on
your system by adding other streams.

There's more...
Let's create an alternative MOH source and test it out. If you have a few MP3 or WAV files that
you would like to use then be ready to copy them over to a new subdirectory on the FreeSWITCH
server. In this example, we will download a few pieces of royalty-free music along with an
attribution sound clip and then we will convert them to WAV files using the mpg123 tool.

Start by creating a directory for our new sounds. In Linux/Unix do this:

mkdir /usr/local/freeswitch/sounds/music/custom1

cd /usr/local/freeswitch/sounds/music/custom1

Copy your MP3 files into this directory. Alternatively you can download some royalty free
music at:

wget http://music.incompetech.com/royalty-free/Skye%20Cuillin.mp3

wget http://music.incompetech.com/royalty-free/Parisian.mp3

wget http://music.incompetech.com/royalty-free/credits%20sounder.mp3

Now convert your MP3 files to WAV files and remove the MP3 files.

for i in *.mp3; do mpg123 -m -r 8000 -w "`basename "$i" .mp3`".wav "$i";
done

rm *.mp3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

109

You now have a set of 8 kHz WAV files that can be used as a music source. The next step is to
create the actual file stream.

Open conf/autoload_configs/local_stream.conf.xml and add this new
stream definition:

<directory name="custom1" path="$${sounds_dir}/music/custom1">
 <param name="rate" value="8000"/>
 <param name="shuffle" value="true"/>
 <param name="channels" value="1"/>
 <param name="interval" value="20"/>
 <param name="timer-name" value="soft"/>
</directory>

Save the file and close. Open conf/dialplan/default/01_Custom.xml and add
this extension:

<extension name="hold_music">
 <condition field="destination_number" expression="^96642$">
 <action application="playback" data="${custom1}"/>
 </condition>
</extension>

Save the file and close. Lastly we need to create the ${custom1} global variable that can be
used anywhere we want to play our custom MOH. Open conf/vars.xml in a text editor and
add this line:

<X-PRE-PROCESS cmd="set" data="custom1=local_stream://custom1"/>

Save the file and exit. Go to fs_cli and issue reloadxml or press F6.

When changing local stream definitions you need to reload the local_stream module from
fs_cli:

reload mod_local_stream

When the module is reloaded, issue this command:

show_local_stream

Among the local streams listed should be your new "custom1" stream:

custom1,/usr/local/freeswitch/sounds/music/custom1

Now you may dial 96642 and you should hear your new music source.

You may now use ${custom1} as the source of MOH, sound supplied in for ringback, and
transfer ringback operations.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

110

Creating conferences
FreeSWITCH excels at letting multiple parties connect to a single conference "room" where
they can all hear and speak to one another. The default configuration has some examples of
conferences that we can use as a starting point. Keep in mind that in FreeSWITCH there is no
need explicitly to "create" a conference room—the conference dialplan application does all
the work for us.

Getting ready
In addition to having a text editor you will need at least two phones for testing, and preferably
another person or two so that you can verify that your conference rooms are working. Also,
make sure that you have the default FreeSWITCH configuration installed as well as the sound
and music files.

How to do it...
Follow these steps:

1. Dial 3000 and listen. You will be put into a standard conference room, and if you are
the only person there you will hear hold music.

2. Dial 3000 from another phone and both persons are in the conference.

3. Add more parties by dialing 3000.

How it works...
The default FreeSWITCH dialplan has conferences pre-defined and ready for use (note that the
conferences are not actually "active" until at least one person calls in). The default dialplan
has these conference extensions:

Extension Range Conference Audio Sampling Rate
3000-3099 8 kHz
3100-3199 16 kHz
3200-3299 32 kHz
3300-3399 48 kHz

The sampling rate is the maximum sampling rate for all members. For example if you have a
phone that uses G.722 at 16 kHz and you call into 3000 then your audio will be resampled
to 8 kHz before being sent out to the other participants. If you have multiple parties whose
phones support wide-band audio, then be sure to use a conference room with a higher
sampling rate to take advantage of the higher quality audio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

111

If you simply need to have several people all hear each other in a conference room, then
use the conference extensions in the default dialplan and modify the extension numbers
as needed.

There's more...
Conferences support many features, such as caller controls and moderators. Read on for
information about using these other features.

Caller controls
There are many controls that you can give to callers in a conference. The most common ones
are as follows:

 f Talk volume: The volume of the audio the caller sends (that is, gain control).

 f Listen volume: The volume of the audio the caller hears.

 f Energy threshold: The minimum energy level of the audio from the caller to be
considered talking. Raising the energy level will cut down on background noise when
a participant is in a noisy environment.

To see the default controls, open conf/autoload_configs/conference.conf.xml and
locate the following section:

<caller-controls>
 <group name="default">
 <control action="mute" digits="0"/>
 <control action="deaf mute" digits="*"/>
 <control action="energy up" digits="9"/>
 <control action="energy equ" digits="8"/>
 <control action="energy dn" digits="7"/>
 <control action="vol talk up" digits="3"/>
 <control action="vol talk zero" digits="2"/>
 <control action="vol talk dn" digits="1"/>
 <control action="vol listen up" digits="6"/>
 <control action="vol listen zero" digits="5"/>
 <control action="vol listen dn" digits="4"/>
 <control action="hangup" digits="#"/>
 </group>
</caller-controls>

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

112

The name of this call control group is "default" and it cannot be modified. However, you can
define your own custom caller controls and then add them to your conference definitions.
Each conference is defined by a "profile" in the <profiles> section of conference.conf.
xml. Let's say you created a caller control group named "custom". To set the conference
profile to use those controls just add this parameter to the profile:

<param name="caller-controls" value="custom"/>

Now all callers who join this conference will have your custom caller controls.

Conference moderator and PIN
Some conferences have the concept of a "moderator" who has some level of control over the
conference. In FreeSWITCH, the conference moderator is simply a conference member whose
absence or presence can optionally affect the conference. There are two primary ways the
moderator affects the conference:

 f All members wait until the moderator arrives

 f The conference ends (all members disconnected) when the moderator leaves

A moderator is created by modifying the conference application's argument in the dialplan.
Compare these two lines:

<action application="conference" data="$1@default"/>
<action application="conference" data="$1@default+flags{moderator}"/>

Notice that we add "+flags{moderator}" to set the caller as the moderator. You can have
multiple flags separated by commas, for example, "+flags{moderator,mute}".

Adding a PIN to the conference is simple as well. The same two conferences listed above can
have a PIN added like this:

<action application="conference" data="$1@default+1234"/>
<action application="conference"
 data="$1@default+1234+flags{moderator}"/>

In both cases, the conference PIN is "1234" and the caller will not be allowed into the
conference until he or she enters the correct PIN number.

Sending faxes
FreeSWITCH can transmit electronic documents to a destination fax machine. Only TIFF
documents can be transmitted, however it is possible to convert a number of graphical
formats to TIFF. This recipe will discuss some common and freely available tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

113

Getting ready
In simple terms, sending a fax requires only a few things such as a TIFF file, a gateway, and
a destination fax machine (for testing purposes you can download the sample TIFF file at
http://files.freeswitch.org/txfax-sample.tiff). Put your TIFF file in a known
location. For our example we will use /tmp/txfax-sample.tiff. The gateway is your
connection to the outside world and the fax machine will simply be the device that answers
your outbound phone call. If you do not have a gateway or a fax machine handy you can still
try out this recipe by using the fax_receive extension in the default dialplan.

How to do it...
In most cases involving fax transmissions you will make an outbound call to a fax machine
(A leg) and then execute the txfax dialplan application. Execute these steps to send a simple
fax transmission:

1. Launch fs_cli.

2. Execute this command:
originate loopback/9178 &txfax(/tmp/txfax-sample.tiff)

Watch the console and eventually the fax transmission should successfully finish.

How it works...
The originate command creates the outbound leg of the fax call. In this example, we are
literally making a call within our own FreeSWITCH server by using the loopback channel.
The target extension is "9178". In a real example we would, of course, be dialing an external
number. For example, we could do this:

originate sofia/gateway/my_gw/18005551212 &txfax(/tmp/txfax-sample.tiff)

In any case, once the A leg is answered, the txfax application is called. If all goes well, the
fax transmission should go through and a received file will be found in /tmp/rxfax.tiff.

There's more...
Faxing can be tricky. The following sections offer some helpful suggestions.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

114

Detecting a fax machine and responding
In some cases you may be making automated phone calls and you would like to react to a
fax machine. Perhaps you would like to send a fax if a fax machine is detected, but would
otherwise like to process the call normally. This can be accomplished with the execute_on_
fax_detect channel variable. Consider this dialplan snippet:

<extension name="fax detect test">
 <condition field="destination_number" expression="1234">
 <action application="export"
 data="execute_on_fax_detect='execute_extension 9178'"/>
 <action application="bridge" data="loopback/9664"/>
 </condition>
</extension>

Here we tell the system to execute an extension (9178) if we detect a fax tone, otherwise
the bridge happens normally and plays hold music. You can adapt this principle for use in
your own dialplans. Simply create a "fax handler" extension and use execute_extension
with execute_on_fax_detect to execute the handler extension whenever a fax machine
is detected.

Diagnosing fax issues
The fax problems are quite common, especially in a VoIP environment. When a fax
transmission fails for some reason it helps to know what happened. If you are using XML
CDRs you will automatically have a number of channel variables populated on every fax call,
whether successful or not. Here is a sample:

<fax_v17_disabled>0</fax_v17_disabled>
<fax_ecm_requested>1</fax_ecm_requested>
<fax_filename>/tmp/txfax.tif</fax_filename>
<fax_success>1</fax_success>
<fax_result_code>0</fax_result_code>
<fax_result_text>OK</fax_result_text>
<fax_ecm_used>on</fax_ecm_used>
<fax_local_station_id>SpanDSP%20Fax%20Ident</fax_local_station_id>
<fax_remote_station_id>SpanDSP%20Fax%20Ident</fax_remote_station_id>
<fax_document_transferred_pages>1</fax_document_transferred_pages>
<fax_document_total_pages>1</fax_document_total_pages>
<fax_image_resolution>8031x3850</fax_image_resolution>
<fax_image_size>24111</fax_image_size>
<fax_bad_rows>0</fax_bad_rows>
<fax_transfer_rate>14400</fax_transfer_rate>

Use this information to diagnose your fax issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

115

Helpful software
There are numerous Free and Open Source Software (FOSS) packages that are available
to help with handling PDF and TIFF files. Members of the FreeSWITCH community have had
particular success with Ghost Script (http://pages.cs.wisc.edu/~ghost/), which lets
you convert to and from PDF and PostScript files.

A common operation is to convert a PDF file to TIFF before transmitting via fax. The following
command will make a standard resolution TIFF file from the source PDF:

gs -q -r204x98 -g1728x1078 -dNOPAUSE -dBATCH -dSAFER -sDEVICE=tiffg3
-sOutputFile=txfax.tiff -- txfax.pdf

For a higher resolution file, use this command:

gs -q -r204x196 -g1728x2156 -dNOPAUSE -dBATCH -dSAFER -sDEVICE=tiffg3
-sOutputFile=txfax.tiff -- txfax.pdf

The Ghost Script executable (gs) is suited quite well to shell scripting.

See also
 f Refer to the Receiving faxes recipe in this chapter
 f Refer to the Using XML CDRs recipe in Chapter 3

Receiving faxes
The preceding recipe described the process of sending a fax. This recipe will describe the
process of receiving a fax.

Getting ready
In its simplest format, receiving a fax requires only that you route an incoming call to an
extension that then executes the rxfax dialplan application. As with the previous recipe, we
can use our FreeSWITCH server to be both the sender and receiver of the fax. For our test we
will use the same file we used in the Sending faxes recipe: /tmp/txfax-sample.tiff.

How to do it...
Execute these steps to do a simple fax transmission and reception:

1. Launch fs_cli.
2. Execute this command:

originate loopback/9178 &txfax(/tmp/txfax-sample.tiff)

Watch the console and eventually the fax transmission should successfully finish.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

116

How it works...
We use the fax_receive extension in the default dialplan to receive the fax transmission.
This extension is quite simple:

<extension name="fax_receive">
 <condition field="destination_number" expression="^9178$">
 <action application="answer" />
 <action application="playback" data="silence_stream://2000"/>
 <action application="rxfax" data="/tmp/rxfax.tif"/>
 <action application="hangup"/>
 </condition>
</extension>

The received fax is stored in /tmp/rxfax.tif. Feel free to modify the filename. For
example, if you have a faxes/ subdirectory off the main freeswitch install directory you
could do this:

<action application="rxfax" data="${base_dir}/faxes/${uuid}.tif"/>

Each incoming fax would have a unique file name and be stored in the faxes/ subdirectory.

There's more...
Receiving faxes is usually part of a larger process or system. The following sections have some
useful information for handling inbound fax transmissions.

Detecting inbound faxes
Let's say that you have an automated attendant that answers all incoming calls and
lets callers choose their destinations. Occasionally a fax call may come in. Instead of
disconnecting, you can detect the fax and send the call to a fax handler extension for
processing. Add this extension to the part of your dialplan that processes inbound phone calls:

<extension name="fax detect" continue="true">
 <condition>
 <action application="set"
 data="execute_on_fax_detect=execute_extension handle_
incoming_fax"/>
 </condition>
</extension>

Now add an extension that actually handles the incoming faxes:

<extension name="fax_receive">
 <condition field="destination_number"
 expression="^handle_incoming_fax$">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

117

 <action application="playback" data="silence_stream://2000"/>
 <action application="rxfax"
 data="${base_dir}/faxes/${uuid}.tif"/>
 <action application="hangup"/>
 </condition>
</extension>

Now the system will automatically handle incoming faxes.

Processing a received fax
Once a fax is received it rarely needs just to sit in a directory somewhere. Usually you will want
a person to see that fax transmission. A common practice is to convert the TIFF file into a PDF
and then email the PDF as an attachment. Also, users appreciate it when caller ID information
can be placed in the subject line of the e-mail. Keep in mind that this will only work if you have
a properly configured mail transport agent (MTA) on your system. Modify your fax receive
extension to be like this:

<extension name="fax_receive">
 <condition field="destination_number"
 expression="^handle_incoming_fax$">
 <action application="set"

 data="api_hangup_hook=system
 ${base_dir}/scripts/emailfax.sh
 ${fax_remote_station_id}
 ${base_dir}/faxes/${uuid}.tif"/>

 <action application="playback" data="silence_stream://2000"/>
 <action application="rxfax"
 data="${base_dir}/faxes/${uuid}.tif"/>
 <action application="hangup"/>
 </condition>
</extension>

Note that we've added an api_hangup_hook to the fax receive extension. This will cause the
script emailfax.sh to be executed. Create this script in a text editor and add these lines:

#!/bin/bash
#
$1 is the calling fax machine's station ID
$2 is filename
mutt -n -f /dev/null -F ~/.muttrc -a $2 -s "Fax from $1" user@domain.
com < /dev/null

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

118

Be sure to replace user@domain.com with a valid e-mail address. Lastly, create the file
.muttrc in the home directory and add these lines:

set from = 'sender@domain'
set realname = 'Organization or business name'
set folder = /dev/null

Received faxes will now be sent to the specified user with the calling fax machine's station ID.

Many scripting languages like Perl, Python, and Ruby have
libraries that allow you to send e-mails. Feel free to try replacing
emailfax.sh with your own e-mail sender script.

See also
 f Refer to the Sending faxes recipe in this chapter

Basic text-to-speech with mod_flite
Sometimes you need a fast, simple, and free text-to-speech implementation for some quick
testing. In FreeSWITCH you can use mod_flite for simple TTS testing. While it is not suitable
for professional, production environments, it meets the criteria of being quick, easy, and free.

Getting ready
Other than a phone and a text editor there is not much you need. Keep in mind that on
Windows the mod_flite module is pre-built but it is not automatically loaded. On Linux/Unix
systems you will need to perform a few steps listed below.

How to do it...
If you are in Windows then skip to step 3. If you have Linux/Unix then follow these steps to
enable mod_flite:

1. Open modules.conf in the FreeSWITCH source and uncomment the line with
#asr_tts/mod_flite by removing the # at the beginning of the line.

2. Save and exit. Run the install command:
make mod_flite-install

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

119

3. If you wish to have mod_flite load by default when FreeSWITCH starts then open
conf/autoload_configs/modules.conf.xml and uncomment this line:
<!-- <load module="mod_flite"/> -->

4. Save and exit. At fs_cli, issue the command load mod_flite.

At this point mod_flite is now active and ready to be used. Now let's add a simple diaplan
extension that will let us test it:

1. Open conf/dialplan/default/01_Custom.xml and add this extension:
<extension name="mod_flite example">
 <condition field="destination_number" expression="^(5008)">
 <action application="answer"/>
 <action application="sleep" data="500"/>
 <action application="speak"
 data="flite|kal|Hello world. This is a FreeSWITCH test."/>
 </condition>
</extension>

2. Save the file and exit. Issue the reloadxml command from fs_cli or press F6.

You are now ready to test. Simply dial 5008 and listen to the voice.

How it works...
FreeSWITCH has a speak dialplan application that is used to access any installed TTS engine.
It accepts pipe-delimited arguments. Note the line we used in the dialplan:

<action application="speak"
 data="flite|kal|Hello world. This is a FreeSWITCH test."/>

The first argument is the name of the TTS engine. The second argument is the name of the
voice for the TTS engine. The last argument is the actual text to be spoken. The sleep app is
optional, however, in many cases it is necessary to pause momentarily after answering a call
to allow the media streams to be established.

Don't confuse the dialplan speak application (TTS) with the say
application! The say application is convenient for saying things like dates,
times, numbers, currency, etc. using the pre-recorded sound prompts.

Flite comes with four voices that you can try out: awb, kal, rms, and slt.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

120

See also
 f Refer to the Advanced text-to-speech with mod_tts_commandline recipe in

this chapter

Advanced text-to-speech with
mod_tts_commandline

The Text-to-speech (TTS) applications vary in their quality, complexity, and price. One
thing most high-end TTS engines have in common, though, is a command line interface for
generating audio from text. FreeSWITCH's mod_tts_commandline module is designed to
take advantage of this. While it is completely possible to create a separate module for each
engine—and indeed this is the case for mod_flite—it is convenient to utilize a more generic
interface that is somewhat agnostic to the exact TTS engine being used.

In this recipe we will install mod_tts_commandline and then download a free TTS engine
that has a command line interface to use with it. We will also show command line examples of
using some commercial TTS engines.

Getting ready
This recipe has a few prerequisites. The most important one is to get a copy of the
freeswitch-contrib git repository. The "contrib repo" as community members call it,
contains a number of items freely given back to the FreeSWITCH community as a whole. One
of these will assist us with installing the Pico TTS engine that is a part of the Android project.
The basic command to clone the git repo is:

git clone git://git.freeswitch.org/freeswitch-contrib.git

The subdirectory created will simply be referred to as freeswitch-contrib.

Git is a popular revision control system used by many projects, including the
Linux kernel. If you are unfamiliar with it we suggest you visit this wiki page
to get started: http://wiki.freeswitch.org/wiki/Git_Tips.

How to do it...
If you are in Windows then skip to step 3. If you have Linux/Unix then follow these steps to
enable mod_tts_commandline:

1. Open modules.conf in the FreeSWITCH source and uncomment the line with
#asr_tts/mod_tts_commandline by removing the # at the beginning of the line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

121

2. Save and exit. Run the install command:
make mod_tts_commandline-install

3. If you wish to have mod_tts_commandline load by default when FreeSWITCH
starts then open conf/autoload_configs/modules.conf.xml and uncomment
this line:
<!-- <load module="mod_tts_commandline"/> -->

4. Save the file and close. Open conf/autoload_configs/tts_commandline.xml
and locate the line beginning with <param name="command"…. Change the line
to this:
<param name="command" value="pico2wave -w ${file} ${text} "/>

5. (For Windows use pico2wave.exe instead of pico2wave).

6. Save the file and exit.

At this point mod_tts_commandline is now compiled and is almost ready for use. Next let's
build the pico TTS engine. Linux/Unix users follow these steps:

1. Change directory to freeswitch-contrib/grmt/svox pico/svox/pico (note
the space between "svox" and "pico")

2. Execute these shell commands:

sh ./autogen.sh

./configure

make && make install

Windows users will need to locate the appropriate solution file in freeswitch-contrib\
grmt\mod_tts_commandline for Windows:

 f mod_tts_commandline.2008.vcproj – Visual Studio 2008

 f mod_tts_commandline.2010.vcxproj – Visual Studio 2010

Open the appropriate solution file and then rebuild.

You will now have the pico2wave (or pico2wave.exe in Windows) command-line utility.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

122

Now let's add a simple diaplan extension that will let us use tts_commandline and pico:

1. Open conf/dialplan/default/01_Custom.xml and add this extension:
<extension name="mod_tts_commandline example">
 <condition field="destination_number" expression="^(5010)">
 <action application="answer"/>
 <action application="sleep" data="500"/>
 <action application="speak" data="tts_commandline|pico|Hello
 world. This is a FreeSWITCH test."/>
 </condition>
</extension>

2. Save the file and exit. Issue the reloadxml command from fs_cli or press F6.

3. At fs_cli, issue the command load mod_tts_commandline.

You are now ready to test. Simply dial 5010 and listen to the voice.

How it works...
There are several elements that interact to make this work. We first built mod_tts_
commandline (just like we would in any other FreeSWITCH module) and then configured it to
use pico2wave or pico2wave.exe. Next, we installed the pico2wave command line utility.
Lastly we created a simple dialplan to call the speak application and read our text.

There's more...
The really interesting part of mod_tts_commandline occurs in the configuration file.
The command parameter tells mod_tts_commandline what to execute when the speak
application is called. Read on for some tricks that you can do with tts_commandline.
conf.xml.

Modifying the audio stream
It is possible to use an intermediate program, such as Sound eXchange (SoX), to modify
the audio that is output from pico2wave. An example of this is to resample the audio. By
default, pico2wave generates mono 16 kHz wave files. If the audio you hear from mod_
tts_commandline sounds too fast or too slow then try resampling with SoX. Open conf/
autoload_configs/tts_commandline.conf.xml and modify the command parameter.
For Linux/Unix use this entry:

<param name="command" value="pico2wave -w /tmp/$$.wav ${text} && sox /
tmp/$$.wav -r ${rate} ${file} && rm /tmp/$$.wav"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

123

For Windows use this entry:

<param name="command" value="pico2wave.exe -w c:\\tmp\\$$.wav ${text}
&& sox.exe C:\\tmp\\$$.wav -r ${rate} ${file} && del c:\\tmp\\$$.
wav"/>

(Be sure that C:\tmp exists, or use an appropriate folder on your Windows system.)

You will need to issue reloadxml or press F6 at fs_cli as well reload mod_tts_
commandline for the changes to take effect.

SoX can perform an amazing array of effects on an audio stream.
Learn more at http://sox.sourceforge.net/.

Other TTS engines
The FreeSWITCH community has tested mod_tts_commandline with a number of
commercial TTS engines, mostly under Linux environments. If you have one of the following
TTS engines then use one of the command parameter entries listed below. In some cases you
will need to tweak your command line parameters. A simple way to test is to manually run your
command and generate a wave file on disk, such as /tmp/test.wav. Then use a simple
dialplan to playback the file:

<condition field="destination_number" expression="^(5010)">
 <action application="answer"/>
 <action application="sleep" data="500"/>
 <action application="playback" data="/tmp/test.wav"/>
</condition>

This is much easier than making repeated changes to tts_commandline.conf.xml and
reloading mod_tts_commandline. Once you have perfected your command line syntax then
update the configuration file and test.

Configuration file examples
The configuration file examples are as follows:

 f Festival: It is the same engine used in mod_flite:
<param name="command" value="echo ${text} | text2wave -f ${rate} >
${file}"/>

 f Cepstral:
<param name="command" value="swift -n ${voice} ${text} -o
${file}"/>

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

124

 f Loquendo:
<param name="command" value="echo ${text} | TTSFileGenerator
-v${voice} –o${file}"/>

See also
 f Refer to the Basic text-to-speech with mod_flite earlier in this chapter

Listening to live calls with telecast
Sometimes you will wish to listen to calls in progress. It is not always easy to "catch" a specific
call. FreeSWITCH includes a simple interface that let's you listen in on a call with only a
browser and an MP3 player such as iTunes. This feature is called telecast.

Getting ready
Be sure to complete the steps in the Using the built-in web interface recipe in this chapter
before attempting to use the telecast feature. You will also need a browser and speakers or
headphones in order to listen in during a phone call.

How to do it...
Start by enabling mod_shout, which is what handles the audio stream. Windows users skip
to step 3. Linux/Unix users start with these steps:

1. Open modules.conf in the FreeSWITCH source and uncomment the line with
#formats/mod_shout by removing the # at the beginning of the line.

2. Save and exit. Build the module with this command:
make mod_shout-install

3. Set mod_shout to load by default when FreeSWITCH starts. Open conf/autoload_
configs/modules.conf.xml and uncomment this line
<!-- <load module="mod_shout"/> -->

4. Save the file and exit.

5. At the fs_cli issue the command load mod_shout.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

125

At this point the telecast API is loaded. Browse to http://<ip_addr>:8080/webabi/
telecast/index to pull up the list of active calls. The default username is "freeswitch"
and the default password is "works". Here is an example of a call in progress.Refer the
following screenshot:

Click one of the links in the Listen column, where mp3 will open your computer's default MP3
player and m3u will open iTunes if it is installed on your system. The audio of the call will
stream as long as the call is in progress.

How it works...
While mod_xml_rpc provides the Web interface, it is mod_shout that provides the ability
to stream audio. In fact, the actual HTML code of this telecast interface resides in mod_
shout.c, however it still requires the web server functionality provided by mod_xml_rpc in
order to work.

This simple interface is just an example of what is possible with the telecast interface. It is
not dynamic nor is it AJAX-enabled. You will have to refresh the browser to see an updated call
list. The telecast interface can be interfaced with a more traditional web server (Apache,
nginx, Lighttpd) to create a more sophisticated on-line application.

See also
 f Refer to the Using the built-in web interface recipe earlier in this chapter

Recording calls
Many enterprises need to record calls for quality control purposes. This recipe describes
how you can record inbound and outbound calls on your FreeSWITCH server. If you need
assistance in getting calls into and out of your FreeSWITCH system, refer to Inbound DID calls
and Outgoing calls both in Chapter 1.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

126

Most countries and localities have laws relating to the recording
of phone calls. Always consult a licensed legal professional in your
jurisdiction before you start recording phone calls.

Getting ready
Recording calls is actually very simple. All you need is a text editor so that you can add a few
lines to your dialplan.

How to do it...
The FreeSWITCH dialplan application record_session is used for recording calls, whether they
are inbound or outbound. (Call direction does not affect the record_session application.)

For inbound calls it is easiest to enable recording right on the Local_Extension. Follow
the steps:

1. Open conf/dialplan/default.xml and locate the Local_Extension dialplan
entry. Add these lines right after the line with the answer application:
<action application="set" data="record_file_name={recordings_
dir}/${strftime(%Y-%m-%d-%H-%M-%S)}_${uuid}.wav" inline="true"/>
<action application="record_session" data="{record_file_name}"/>

2. Save the file, then run fs_cli and press F6 or issue the reloadxml command.

Now any call made to a local extension will be recorded. (This includes internal calls from one
phone extension to another.)

For outbound calls we need to do something a bit different because we don't necessarily know
that the call will actually be answered.

1. Open the dialplan file that contains your outbound route. Add these lines right before
your bridge application:
<action application="set" data="record_file_name={recordings_
dir}/${strftime(%Y-%m-%d-%H-%M-%S)}_${uuid}.wav" inline="true"/>
<action application="export" data="execute_on_answer=record_
session {record_file_name}"/>

2. Save the file, then run fs_cli and press F6 or issue the reloadxml command.

Now any answered call made through this gateway will be recorded.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

127

How it works...
The record_session application will record the audio on the channel. Technically, the
record_session application is only running on one leg of the call. In the inbound example,
it is running on the called leg (B leg). In the outbound example it is running on the calling leg
(A leg). The record_session application records audio in both directions and therefore the
entire call is recorded.

The filename is stored in the channel variable record_file_name. We piece together
several bits of information to create the full path:

 f ${recordings_dir}: By default this gets set to ${base_dir}/recordings/

 f strftime(%Y-%m-%d-%H-%M-%S): This produces a timestamp in the format of
YYYY-MM-DD-hh-mm-ss

 f ${uuid}.wav: This adds the calls' unique ID to the filename

The net result is that our file has a complete and unique path and file name. For example:

/usr/local/freeswitch/recordings/2012-02-21-13-34-18_ca806474-1c30-
4052-b366-17f2e9287cb2.wav

The strftime API is very handy for getting the current date and time
in various formats. It uses the format strings found in the standard Unix
strftime command. You can experiment with it at fs_cli. Try issuing
different commands like strftime and strftime %Y-%m-%d-%H-
%M-%S to see what you get.

There's more...
You may have noticed that the Local_Extension has a curious entry:

<action application="bind_meta_app" data="2 b s record_
session::$${recordings_dir}/${caller_id_number}.${strftime(%Y-%m-%d-
%H-%M-%S)}.wav"/>

By default, a user who receives a call can manually enable call recording by pressing *2.
By itself this a handy feature, however in the case where we automatically record all calls
this feature is irrelevant. A much more useful feature would be the ability to turn off the
call recording. This can easily be done by adding a few more lines to our dialplan. Note that
we only want our telephone user (what we usually call an "agent") to be able to control the
call recording, which means we need to enable a key combination only on the agent's leg
of the call. The agent is the A leg on an outbound call and is the B leg on the inbound call.
Fortunately, we already have separate dialplan entries for each call type. We simply need to
add the appropriate bind_meta_app in each case.

www.it-ebooks.info

http://www.it-ebooks.info/

PBX Functionality

128

For inbound calls we just need to replace the bind_meta_app entry mentioned above. Open
conf/dialplan/default.xml and replace the "curious entry" with this line:

<action application="bind_meta_app" data="2 b s execute_
extension::stop_record_${dialed_extension}"/>

Save the file and exit. For outbound calls, open the dialplan file to which you added the
record_session application. Right before the bridge application add this line:

<action application="bind_meta_app" data="2 a s execute_
extension::stop_record_${caller_id_number}"/>

Save the file and exit. The last step is to create a new dialplan file that will handle the "stop
recording" action that we have implemented. Create a new file in conf/dialplan/ called
recording.xml and add these lines:

<include>
 <context="recordings">
 <extension name="Stop Recording"/>
 <condition field="destination_number"
 expression="^stop_recording_(.*)">
 <action application="log" data="WARNING Agent $1 has stopped
 a recording"/>
 <action application="stop_record_session"
 data="${record_filename}"/>
 <action application="set" data="res=${uuid_broadcast ${uuid}
 ivr/ivr-recording_stopped.wav both}"/>
 </condition>
 </extension>
 </context>
</include>

Save the file and exit. Open fs_cli and press F6 or issue the reloadxml command. Now
test the feature. Have an agent press *2 on an active call. The agent and caller/callee should
hear, "recording stopped." The console will show the stop_record_session application
being executed. The call recording will now be stopped.

See also
 f Refer to the Incoming DID calls and the Outgoing calls recipes in Chapter 1

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
:_: symbol 21
$accountcode variable 41
$chan_call_state variable 81
$chan_leg variable 81
$chan_name variable 81
$chan_state variable 81
$con object 78
$con variable 80
$e event object 80
$fd variable 75
$info object 75
$stay_connected variable 83
@all_fields array 59
<condition> tag 9
@fields list 59
-H option 67
@i 45
/log 6 command 66
/log 7 command 66
<match> node 102
/noevents command 67
<nomatch> node 102
-P option 67
-r option 67
--users argument 95
<var=val> notation 21
-x option 67

A
absolute_codec_string 45
accountcode parameter 49
add_user script 8, 94-96
anti-action tags 25
api() method 71

Application Development Framework. See
asterisk template 50
audio devices

connecting, with PortAudio 33-35
Automated Resource Management. See

B
backend database

CDRs, inserting 53-55
BACKGROUND_JOB event 84, 85
bgapi command 83
bgapi() method 71, 81
bgapi status command 85
bind_meta_app dialplan application 8
B leg, XML CDRs

logging 53
bridge application

about 16
versus originate command 20

bridge command 14, 16
built-in macros, ojdeploy. See ojdeploy, built-

in macros

C
call

controlling, ESL connection object used 86,
88

launching, inbound event socket connection
used 81

Call detail records. See CDRs
caller ID 32
caller_id_number 12
calls

recording 125-128
call_timeout variable 17

www.it-ebooks.info

http://www.it-ebooks.info/

130

cdr parameter 57
CDRs

about 47
handling, event socket used 59, 60
inserting, into backend database 53-55

Cepstral 123
cgi-bin directory 57
CHANNEL_EXECUTE event 80
CHANNEL_HANGUP_COMPLETE event 80
Codec configuration 43-46
command-line options 67
comma-separated value. See CSV
company directory 98-100
conferences

caller controls 111, 112
conference moderator and PIN 112
creating 110, 111

contexts, FreeSWITCH configuration
customizing 33
default 6
features 6
public 6

cron job 55
CSV 47
CSV CDRs

asterisk template 50
default-template parameter 50
legs option 50
templates 50
using 47-49

D
day of week setup extension 24
day_part dialplan 23
default context 6
default-template parameter 50
destination_number field 6, 10, 12
destination_out_of_order condition 17
dialplan

about 5
actions 5
contexts 5
extensions 5
regular expressions 5

dialplan extension 100

DID calls
incoming 10, 11

DID numbers 10
Direct Inward Dialing. See DID calls
directory-exten-visible 100
directory_full_name variable set 99
directory-visible 100
domain_name channel variable 10
DTMF event 76, 84

E
effective_caller_id_name variable set 99
else block 84
enterprise originate 19
ep_codec_string variable 46
ESL

about 59, 63
considerations 61
Debian 68
languages supported 63, 64
make install command 69
Red Hat Linux 68
setting up 68, 69

ESL::ESLconnection object 71
ESL::ESLconnection object class 75
ESL::IVR Perl module 76
ESL connection object

help command 90
mod_xml_rpc module 89
play_and_get_digits application 88
using, to control call 86, 88
while loop 88

events
$con variable 80
$e event object 80
CHANNEL_EXECUTE event 80
CHANNEL_HANGUP_COMPLETE event 80
CHANNEL_STATE event 81
filtering 79
viewing 67

event socket
using, to handle CDRs 59, 60

Event Socket Library. See ESL
execute_extension 24
execute method 75
execute_on_fax_detect channel variable 114

www.it-ebooks.info

http://www.it-ebooks.info/

131

export application 46
extensions 5
external phone numbers 10

F
fax

inbound faxes, detecting 116
issues, diagnosing 114
machine, detecting 114
received fax, processing 117, 118
receiving 115, 116
reception, steps 115
sending 112, 113
transmission, steps 115

fax_receive extension 116
features context 7
Festival 123
Free and Open Source Software (FOSS) 115
FreeSWITCH

about 29
calls, recording 125-128
company directory 98-100
conferences, creating 110, 111
events 79
fax machine, detecting 114
fax, receiving 115
fax, sending 112, 113
MOH 107
PCRE 6
routing calls 5
SIP phone, configuring 30-32
users, creating 94-96
using, as softphone 36-38
XML IVR menus, creating 103-107

freeSWITCH Command line Interface. See
fs_cli interface

FreeSWITCH configuration, contexts
default 6
features 6
public 6

freeswitch-contrib git repository
URL 37

FreeSWITCH wiki
URL 13

fs_cli command 85
FSClient 37

fs_cli interface 64, 66
fs_cli program

command-line options 67
online documentation, URL 67

fs_cli session 84
fscomm directory 37
fsctl send_sighup command 54
fs_ivrd module 76
fs_ivrd script 77
fs_ivrd tool

using, to manage outbound connections 76-
78

G
getBody() method 71
getHeader() method 71, 76
Ghost Script executable (gs) 115
Google Voice

configuring 42, 43
gosub statement 24
goto statement 24

H
hangup_complete_with_xml channel variable

61
help command 66, 90
HTTP POST action 56

I
if statement 84
ignore_early_media 14, 16
inbound event socket connection

$e variable 84
$stay_connected variable 83
api() method 71
BACKGROUND_JOB event 84, 85
bgapi() method 71, 81
creating 69
else block 84
fs_cli utility 69
getBody() method 71
if statement 84
recvEventTimed 84
script 71
status command 70

www.it-ebooks.info

http://www.it-ebooks.info/

132

used, for launching call 81
inbound-late-negotiation parameter 45
include path 69
INFO log level 6
inherit_codec 45
INSERT statements 55
internal calls 8, 9
ivr application 105
ivrd-example.pl script 78
ivr_path channel variable 78

L
legs option 50
leg_timeout parameter 14, 15
leg_timeout variable 18
live calls

with telecast 124, 125
Local_Extension 7-9
local_stream module 109
log application 6
log-dir parameter 52
Loquendo 124

M
mail transport agent. See MTA
make command 108
make install command 69
mod_cdr_csv sql template 55
Mod_dingaling 42
mod_event_socket 64
mod_portaudio module 33, 34
mod_sofia module 30
mod_tts_commandline

about 122
TFS with 120, 121

mod_xml_cdr 47
mod_xml_rpc module

about 89, 125
XML RPC 91

MOH
about 107, 108
working 108

MTA 116, 117
multiple endpoints

busy failure conditions, handling 16, 17
calling, with enterprise originate 19-21

failure conditions, handling 16, 17
individual bridge calls, using 18, 19
no answer conditions, handling 17, 18
ringing, sequentially (simple failover) 15, 16
ringing, simultaneously 13-15
variables, setting 21

Music on hold. See MOH
myevents command 75

N
Nokia’s QT library

URL 37
North American Numbering Plan (NANPA) 13

O
office_status dialplan 23
OPTIONS ping setting 41
originate command

about 16, 35
versus bridge application 20

originate_continue_on_timeout variable 18
originate_timeout variable 17
our_sip_provider 11, 12
our_sip_provider2 gateway 12
our_sip_provider.gateway 13
outbound connections

$con object 78
ivrd-example.pl script 78
ivr_path channel variable 78
managing, fs_ivrd tool used 76-78

outbound event socket connection
$fd variable 75
$info object 75
establishing 72
reloadxml command 72
sendRecv command 75

outgoing calls 11, 13

P
pa call command 35
pa hangup command 35
PBX 93, 94
PCRE 6
Perl-compatible regular expressions. See

PCRE

www.it-ebooks.info

http://www.it-ebooks.info/

133

phrase macros
creating, steps 101
using, to build sound prompts 100
working 102

play_and_get_digits application 88
PortAudio

controlling 91
used, for connecting audio devices 33-35

portaudio channel 35
prefix-a-leg parameter 52
Private Branch Exchange. See PBX
public context 7
Public Switched Telephone Network (PSTN).

See DID calls

R
record_session application 126, 127
recvEventTimed() method 61, 84
Regexp$$Assemble 96
regular expressions 6
reload

versus sofia profile rescan 40
reloadxml command 9, 12, 72, 95, 107
resampling 43
ringback variable 22
routing

time of day 22-25
routing calls

about 5
dialplan 5
To:header, manipulating on registered end-

points 26, 27
to endpoints 26, 27

S
sendRecv command 75
sendRecv method 75
show calls command 66
show channels command 66
SIP gateway

configuring 38-40
SIP phone

caller ID 32
configuring, to register with FreeSWITCH 30-

32
context, customizing 33

SIT tones 17
URL 17

sleep app 119
sofia profile rescan

versus reload 40
sofia status command 66
sofia status profile internal command 66
softphone configuration 36-38
softphone subdirectory 36
Sound eXchange. See SoX
sound prompts

building, phrase macros used 100
SoX 122
speak dialplan application 119
status command 70
strftime API 127

T
tail utility 48
telecast 124, 125
TFS

audio stream, modifying 122
engines 123
file examples, configuring 123
with mod_flite 118, 119
with mod_tts_commandline 120, 121

Time of day extension 24
time of day routing 22-25
To:header 26
tod channel variable set 106
tr 55
transcoding 43
transfer dialplan applications 24

U
userA@local.pbx.com channel 21
userB@local.pbx.com channel 21
user_busy condition 17
userC@local.pbx.com channel 21
userD@local.pbx.com channel 21
users

about 94
add_user script 95
creating, steps 94, 95
Regular expressions, with Regexp$$Assemble

96

www.it-ebooks.info

http://www.it-ebooks.info/

134

reloadxml command 95
working 95

uuid 53
uuid_create method 83
uuid_kill command 84

V
voicemail

about 96
accessing, steps 96
advanced menu options 97
main menu options 97
working 97

voicemail_record_file_check 102
VoIP connections 10

W
web server

using, to handle XML CDRs 56-58

while loop 75, 88

X
XML CDRs

B leg, logging 53
file names and locations 52
log-dir parameter 52
prefix-a-leg parameter 52
using 51

XML dialplan wiki page
URL 25

XML IVR menus
creating 103-107
creating, steps 103, 104

XML RPC
in mod_xml_rpc module 91

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

FreeSWITCH Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

FreeSWITCH 1.0.6
ISBN: 978-1-847199-96-6 Paperback: 320 pages

Build robust high performance telephony systems using
FreeSWITCH

1. Install and configure a complete telephony system
of your own even if you are using FreeSWITCH for
the first time

2. In-depth discussions of important concepts like
the dialplan, user directory, and the powerful
FreeSWITCH Event Socket

3. The first ever book on FreeSWITCH, packed with
real-world examples for Linux/Unix systems, Mac
OSX, and Windows, along with useful screenshots
and diagrams

Building Telephony Systems
with OpenSIPS 1.6
ISBN: 978-1-849510-74-5 Paperback: 284 pages

Build scalable and robust telephony systems using SIP

1. Build a VoIP Provider based on the SIP Protocol

2. Cater to scores of subscribers efficiently with a
robust telephony system based in pure SIP

3. Gain a competitive edge using the most scalable
VoIP technology

4. Learn how to avoid pitfalls using precise billing

5. Packed with rich practical examples and case
studies on the latest OpenSIPS version 1.6

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

trixbox CE 2.6
ISBN: 978-1-847192-99-8 Paperback: 344 pages

Implementing, managing, and maintaining an
Asterisk-based telephony system

1. Install and configure a complete VoIP and
telephonic system of your own; even if this is your
first time using trixbox

2. In-depth troubleshooting and maintenance

3. Packed with real-world examples and case studies
along with useful screenshots and diagrams

4. Best practices and expert tips straight from the
Community Director of trixbox, Kerry Garrison

AsteriskNOW
ISBN: 978-1-847192-88-2 Paperback: 204 pages

A practical guide for deploying and managing an
Asterisk-based telephony system using the AsteriskNOW
software application

1. Install an Asterisk-based telephony system fast

2. Build an office PBX using AsteriskNOW

3. Learn the AsteriskGUI web management interface

4. Configure IP phones and connections

5. Configure and use the conferencing system

6. Write your own applications for Asterisk

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Routing Calls
	Introduction
	Internal calls
	Incoming DID calls
	Outgoing calls
	Ringing multiple endpoints simultaneously
	Ringing multiple endpoints sequentially (simple failover)
	Advanced multiple endpoint calling with enterprise originate
	Time of day routing
	Manipulating To: headers on registered endpoints to reflect DID numbers

	Chapter 2: Connecting Telephones and Service Providers
	Introduction
	Configuring a SIP phone to register with FreeSWITCH
	Connecting audio devices with PortAudio
	Using FreeSWITCH as a softphone
	Configuring a SIP gateway
	Configuring Google Voice
	Codec configuration

	Chapter 3: Processing Call Detail Records
	Introduction
	Using CSV CDRs
	Using XML CDRs
	Inserting CDRs into a backend database
	Using a web server to handle XML CDRs
	Using the event socket to handle CDRs

	Chapter 4: External Control
	Introduction
	Getting familiar with the fs_cli interface
	Setting up the event socket library
	Establishing an inbound event socket connection
	Establishing an outbound event socket connection
	Using fs_ivrd to manage outbound connections
	Filtering events
	Launching a call with an inbound event socket connection
	Using the ESL connection object for call control
	Using the built-in web interface

	Chapter 5: PBX Functionality
	Introduction
	Creating users
	Accessing voicemail
	Company directory
	Using phrase macros to build sound prompts
	Creating XML IVR menus
	Music on hold
	Creating conferences
	Sending faxes
	Receiving faxes
	Basic text-to-speech with mod_flite
	Advanced text-to-speech with mod_tts_commandline
	Listening to live calls with telecast
	Recording calls

	Index

