

< html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">

FreeSWITCH 1.8

VoIP and WebRTC with FreeSWITCH: The definitive source

Anthony Minessale II
Giovanni Maruzzelli

BIRMINGHAM - MUMBAI

FreeSWITCH 1.8

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2017

Production reference: 1120717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78588-913-4

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Anthony Minessale II

Giovanni Maruzzelli

Copy Editor

Safis Editing

Reviewer

Brian West

Project Coordinator

Judie Jose

Acquisition Editor

Rahul Nair

Indexer

Aishwarya Gangawane

Content Development Editor

Abhishek Jadhav

Graphics

Kirk D'Penha

Technical Editor

Aditya Khadye

Manish Shanbhag

Production Coordinator

Aparna Bhagat

About the Authors
Anthony Minessale II is the primary author and founding member of the
FreeSWITCH Open Source Soft-Switch. Anthony has spent around 20 years working
with open source software. In 2001, Anthony spent a great deal of time contributing
code to the Asterisk PBX and has authored numerous features and fixes to that
project. In 2005, Anthony started coding a new idea for an open source voice
application. The FreeSWITCH project was officially open to the public on January 1
2006. In the years that followed, Anthony has been actively maintaining and leading
the software development of the FreeSWITCH project. Anthony also founded the
ClueCon Technology Conference in 2005, and he continues to oversee the production
of this annual event.

Anthony has been the author of several FreeSWITCH books, including FreeSWITCH
1.0.6, FreeSWITCH 1.2, FreeSWITCH Cookbook,FreeSWITCH 1.6 Cookbook, and
Mastering FreeSWITCH

I'd like to thank my wife Jill and my kids, Eric and Abbi, who were in grade school
when this project started and are now grown up. I'd also like to thank everyone
who took the time to try FreeSWITCH and submit feedback. I finally thank my
coauthor Giovanni Maruzzelli for working on this book.

Giovanni Maruzzelli (gmaruzz@OpenTelecom.IT) is heavily engaged with
FreeSWITCH. In it, he wrote a couple of endpoint modules, and he is specialized
in industrial grade deployments and solutions. He's the curator and coauthor of
FreeSWITCH 1.6 Cookbook (Packt Publishing, 2015), and of Mastering
FreeSWITCH (Packt Publishing, 2016)

He's a consultant in the telecommunications sector, developing software and
conducting training courses for FreeSWITCH, SIP, WebRTC, Kamailio, and
OpenSIPS.
As an Internet technology pioneer, he was the cofounder of Italia Online in 1996,
which was the most popular Italian portal and consumer ISP. Also, he was the
architect of its Internet technologies Italia Online (IOL). Back then, Giovanni
was the supervisor of Internet operations and the architect of the first engine
for paid access to il Sole 24 Ore, the most-read financial newspaper in
Italy, and its databases (migrated from the mainframe). After that, he was the
CEO of the venture capital-funded company Matrice, developing telemail unified
messaging and multiple-language phone access to e-mail (text to speech). He was

also the CTO of the incubator-funded company Open4, an open source managed
applications provider. For 2 years, Giovanni worked in Serbia as an Internet and
telecommunications investment expert for IFC, an arm of the World Bank.

Since 2005, he has been based in Italy, and he serves ICT and telecommunication
companies worldwide.

I'd like to thank the Open Source VoIP and RTC Community (that's our ecosystem,
where FreeSWITCH is thriving because of the others). The whole FreeSWITCH
Community, and each single individual that day in and day out tests, documents,
and helps each other in implementing FreeSWITCH.

And I like to thank Tony, Brian, Mike, Ken, Italo, and Seven for the incredible
efforts they put into FreeSWITCH, and for the incredible results those efforts bears
for us all to enjoy. Thanks my guys!

Anthony Minessale II, you get a special personal thank you for bearing your role
with so much grace.

About the Reviewer
Brian West is a founding member of the FreeSWITCH team. He has been involved
in open source telephony since 2003. Brian was heavily involved in the Asterisk
open source PBX Project as a Bug Marshal and developer. In 2005, Brian joined the
initiative that eventually lead to the FreeSWITCH Open Source Soft-Switch. Today,
Brian serves as the general manager of the FreeSWITCH project and keeps the
software moving forward. Brian has countless skills as a developer, tester, manager,
and technologist, and he fills a vital role in the FreeSWITCH Community

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details. At www.PacktPub.com, you can also
read a collection of free technical articles, sign up for a range of free newsletters and
receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1785889133.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/1785889133

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Architecture of FreeSWITCH
Real-time communication without mysteries
The FreeSWITCH design - modular, scalable, and stable
Important modules - Endpoint and Dialplan
Complex applications made simple

Voicemail
Multi-party audio/video conferencing
FreeSWITCH API commands (FSAPI)
The XML registry
Scripting language modules
The demo configuration

Summary
2. Building and Installation

Where to Install FreeSWITCH
Choice of Operating System

Linux
Windows
OS X (Mac)
*BSD

Packages or Source?
Installing FreeSWITCH

Debian 8 Jessie
From Packages
From Source

Windows
Summary

3. Test Driving the Example Configuration
Important concepts to understand

XML Configuration

Regular Expressions
Call Legs
IVRs, Interactive Voice Response (Systems)
Extensions, Contexts and Profiles
Variables

Caller profile Variables
"Normal" Variables
"Preprocessor" Variables

FS_CLI and Console, Controlling FreeSWITCH
Exiting from Console kills FreeSWITCH
Some useful CLI commands

Configure SIP and make the first calls in demo dialplan
Change demo example password
Configure Linphone on a Desktop
Configure a SNOM SIP "real" phone
Configure Linphone on Android
And now... Fun, fun, fun with the Demo Dialplan

9386, Funny Prompts
1000...1019, Phone to Phone Local Call
5000, Calling the Demo Example IVR
3000, Conference Call

Example Dialplan quick reference
Summary

4. User Directory, SIP, and Verto
User Directory concepts
AAA: Authentication, Authorization, Accounting
Exploring and Using the Demo Example User Directory

Domains and groups
Users
Adding a user to the demo example directory and dialplan

Adding a new user to the directory
Modifying the dialplan for the new user

Call to a Group
Voicemail

Communicate with the World via SIP Gateways and DIDs
SIP Gateway from Us to the ITSP to the World
SIP DID from World to the ITSP to Us
SIP and Verto Profiles, Dialplan Contexts, ITSPs

SIP Profiles
Dialplan Contexts
Verto Profiles and Dialplan Contexts
ITSPs

Summary

5. WebRTC, SIP, and Verto
WebRTC concepts
Encryption Everywhere
WebRTC in FreeSWITCH

WebRTC Signaling in FS: SIP and Verto
Why SIP and why Verto?

WebRTC Media Streaming in FS: SRTP
Installing and Configuring WebRTC in FS

Certificates
Installing and Configuring Apache or NginX for HTTPS serving

Apache
NginX

Configuring VERTO
Configuring SIP on WebRTC (WSS)

Writing WebRTC Clients
SIP and JavaScript
Verto and JavaScript

Verto Communicator, an Advanced WebRTC Client
WebRTC Rooms, both SIP and Verto Clients

Conference chat in WebRTC Rooms
FreeSWITCH Conferences
mod_sms and chatplan
Dialplan "chat_proto" extension
HTML
JavaScript
TODO

Summary
6. XML Dialplan

Forget all you know
Contexts

Default context
Public context

Features
Extensions
Conditions (and "patterns")
Call legs (channels)
Channel Variables
Regular Expressions
Actions and anti-actions
How dialplan processing works
Important dialplan applications

answer
bridge
hangup

ivr
play_and_get_digits
playback
set
sleep
transfer

Dialstring formats
SIP (sofia)
VERTO
Other dialstring formats
Originate Command

Summary
7. Phrase Macros and XML IVRs

Phrase Macros and Voice Prompts
Voice Prompts history
Sound files in FreeSWITCH

Sound files locations, sampling rate and fallbacks
Phrase Macros: Concatenating Sound files

macro name (pause)
input pattern
match - nomatch
action

Phrase Macros: Invocation, Patterns and Registers
Phrase Macro Invocation
Input Pattern and Registers

XML IVRs
IVR in demo config
XML voice menu fields

name
greet-long
greet-short
invalid-sound
exit-sound
timeout
inter-digit-timeout
max-failures
max-timeouts
digit-len
tts-engine
tts-voice
confirm-key

XML voice menu entries and actions
menu-exec-app

menu-play-sound
menu-sub
menu-back
menu-top
menu-exit

Nesting XML IVRs
Summary

8. Lua FreeSWITCH Scripting
Many scripting languages

Why Lua?
Basic Lua syntax
Lua and FreeSWITCH

freeswitch
freeswitch.Session and session
freeswitch.API
freeswitch.Dbh
freeswitch.Event
freeswitch.EventConsumer
freeswitch.IVRMenu

Lua scripting IVR Applications
playAndGetDigits

Syntax
Arguments
Behavior

XML demo IVR in Lua
Always checking session:ready()

Summary
9. Dialplan in Deep

Where are the previous Dialplan seasons?
XML Dialplan Recap
More about conditions

regex operator (multiple variables and/or expressions)
nested conditions

Pitfalls to avoid
Variables

Global variables
Time of Day, Day of Week, Holidays
Channel Variables
Channel Variables and Field shortcuts
Channel Variables and Caller Profile fields
Channel Variables and call setup

setting channel variables in dialstrings
setting channel variables on B-legs: export and nolocal

exporting variables to SIP custom (X-) Headers
API commands from Dialplan
FreeSWITCH string interpreter functions

cond, C-like "expr ? truevalue : falsevalue"
variables' substrings
db and hash: simple key/value stores

"Hotkeys", Listening, Barging
bind_meta_*, DTMFs to actions outside menus
eavesdrop (call barge)

eavesdrop DTMF commands
Dialplan Cookbook

Match by IP address and call a number
Match an IP address and Caller ID
Match a number and strip digits
Match a number, strip digits, and add a prefix
Call a registered device
Try party A, then party B
Route DIDs to extensions
Alternate outbound gateways
Multiple endpoints with enterprise originate

Summary
10. Dialplan, Directory, and ALL via XML_CURL and Scripts

mod_xml_curl rationale
mod_xml_curl configuration
mod_xml_curl: Caveats and Pitfalls
php/mysql setup for mod_xml_curl

Create and populate the Database
Setup NGINX and xmlhandler.php
mod_xml_curl configuration
Testing php/mysql setup for mod_xml_curl

Lua XML handler
lua xmlhandler script
lua.conf.xml
Lua xml_handler.lua testing

Summary
11. ESL - FreeSWITCH Controlled by Events

Event System Fundamentals
Event format - Headers and Body
Event Handling modules

mod_event_socket
mod_event_socket configuration
Reading and sending events via telnet
fs_cli

Event System Commands
api
bgapi
event
filter
filter delete
sendevent
exit
auth
log
nolog
nixevent
noevents
sendmsg

call-command
execute
hangup

Outbound Socket - call connects to you
ESL - Event Socket Library

ESL supported languages
ESL Reference

eslSetLogLevel
ESLevent Object

new
serialize
setPriority
getHeader
getBody
getType
addBody
addHeader
delHeader
firstHeader
nextHeader

ESLconnection Object
new
socketDescriptor
connected
getInfo
send
sendRecv
api
bgapi

sendEvent
recvEvent
recvEventTimed
filter
events
execute
executeAsync
setAsyncExecute
setEventLock
disconnect

ESL installation
ESL: Examples in Perl

Display Filtered Events
Use "api" and "bgapi"
Use "sendEvent"

Summary
12. HTTAPI - FreeSWITCH Asks Webserver Next Action

HTTAPI Rationale
HTTAPI dialplan

data
httapi_profile
url
method

HTTAPI document syntax
Work actions

playback
record
pause
speak
say
execute
sms
dial
recordCall
conference
hangup
break
log
continue
getVar
voicemail
vmname

exiting (param)
storing data across successive requests

mod_httapi configuration file
params

gateway-url
method

permissions
set-params
set-vars
get-vars
extended-data

extended-data longer than max CGI length
execute-apps
expand-vars
dial

dial-set-dialplan
dial-set-context
dial-set-cid-name
dial-set-cid-number
dial-full-originate

conference
conference-set-profile

HTTPAPI libraries for PHP and Python
The demo-ivr in PHP-HTTAPI
Summary

13. Conferencing and WebRTC Video-Conferencing
Conferencing Concepts
Conferencing Support in FreeSWITCH

Audio conferencing
Video conferencing

Audio Conferencing setup in FreeSWITCH
profiles

rate
caller-controls
auto-record
interval
energy-level
member-flags
conference-flags
tts-engine
tts-voice
pin
max-members

caller-id-name
caller-id-number
comfort-noise
announce-count
suppress-events
sound-prefix
sounds

caller-controls
advertise

Video-WebRTC conferencing setup in FreeSWITCH
profiles additional video parameters

video-mode
video-layout-name
video-canvas-size
video-no-video-avatar
video-mute-banner

caller-controls additional video actions
member-flags additional video options
conference-flags additional video options
screen estate layouts
layout groups

FreeSWITCH conferencing operation
Conference Application (dialplan)
Controlling active conferences
Calling outbound into the conference

Verto Communicator and Video-WebRTC Conferencing
settings
participants list
participant GUI commands and chat
moderator GUI commands
screen sharing

Summary
14. Handling NAT

A brief introduction to NAT
Understanding the evolution of NAT

The four pitfalls of NAT
Demystifying NAT settings in FreeSWITCH
Making media flow
Advanced options and settings
FreeSWITCH behind NAT

FreeSWITCH speaks to the router
FreeSWITCH behind NAT, leaving the router alone
Additional ways to set the external addresses

Other creative uses of FreeSWITCH in a NAT situation
NAT and WebRTC (SOLVED)
Conclusion
Summary

15. VoIP Security
Network level protection

Separating interfaces and restricting traffic
Sample setup - simple
Sample setup - complex

VLANs
Intrusion detection

Registration and call attempts monitoring
Fail2Ban

Filter configurations
Jail configurations
Do not lock the good guys out!

Encryption in non-WebRTC SIP: Signaling and Media
Choosing between encryption options

Disabling SSLv3 and SSLv2
Certificates

"Real" certificates, from "real" CAs
Protecting signaling

Encryption with TLS
Protecting media

Encryption with SRTP
Enabling SRTP
Debugging SRTP

Encryption with ZRTP
Enabling ZRTP

Testing media SIP encryption
Protecting WebRTC SIP and VERTO Signaling and Media
Protecting passwords

Registration passwords as hashes
Voicemail passwords

Summary
16. Troubleshooting, Asking for Help, and Reporting Bugs

Troubleshooting FreeSWITCH
firewall rules and network issues
checking FreeSWITCH configuration and operation
fsctl loglevel 7
sofia global siptrace on
verto debug=10
sngrep: SIP dialogs visualization
tcpdump for saving net traffic in pcap files

Asking for Help

Read the documentation first!
confluence
books
mailing list archives
google

How to ask for Community Help
IRC
HipChat
mailing lists

Official Commercial Support and Consulting
Reporting Problems

don't report a bug on mailing list !
how to file a bug on Jira

ClueCon
Summary

Preface
This is the third book in a Trilogy: FreeSWITCH 1.6 Cookbook, Mastering
FreeSWITCH, and yours truly, FreeSWITCH 1.8. Each one of them has its own role
in FreeSWITCH's Universe. The call of this one you're reading is to be the reference
and foundation, the exhaustive source of FreeSWITCH knowledge.

We've worked hard, we started from the efforts of our co-writers in FreeSWITCH 1.2
book (they were Michael S. Collins, Darren Schreiber and Raymond Chandler),
we've updated, rewritten and written anew and we're now proud to introduce you to
all you need to know about latest FreeSWITCH.

So much happened in the world of Real Time Communication and VoIP in the last
years. And FreeSWITCH was leading innovation, implementation and
interoperability in the industry: WebRTC, Video MCU, High Definition Audio,
OPUS, VP8/9, JSON, Encryption and Security, you name it, FreeSWITCH was there.

We're about to announce FreeSWITCH 1.8: an evolutionary step from 1.6, that
enhance performances and changes a lot of under the hood plumbing that will be the
nervous system of The Next Big Things (TM) in FreeSWITCH Universe.

From an operation, administration and application programming point of view 1.8 is
completely compatible with 1.6, and this book cover them both.

What this book covers
Chapter 1, Architecture of FreeSWITCH, gives a brief, but thorough introduction to the
underlying architecture of FreeSWITCH.

Chapter 2, Building and Installation, shows how to download and install
FreeSWITCH on Windows and Unix-like operating systems.

Chapter 3, Test Driving the Example Configuration, provides a hands-on look at the
powerful and feature-rich example FreeSWITCH configuration.

Chapter 4, User Directory, SIP, and Verto, offers an introduction to the concept of users
and the directory as well as a brief look at SIP and Verto user agents.

Chapter 5, WebRTC, SIP, and Verto, introduce WebRTC and its FreeSWITCH
implementation, for both SIP and Verto signaling protocol, with an example web
video conferencing application written for both protocols.

Chapter 6, XML Dialplan, explains the basic dialplan concepts and how to create and
edit extensions to add advanced functionality to a FreeSWITCH install.

Chapter 7, Phrase Macros and XML IVRs, discusses how to create menus and sound
phrases for interacting with callers as well as the useful Phrase Macro system.

Chapter 8, Lua FreeSWITCH Scripting, introduces the concept of advanced call
handling using the lightweight scripting language Lua.

Chapter 9, Dialplan in Deep, builds upon the foundation laid in Chapter 6, and shows
how to handle more challenging routing scenarios.

Chapter 10, Dialplan, Directory, and ALL via XML_CURL and Scripts, discusses how
to configure and control FreeSWITCH dynamically, such as from a database.

Chapter 11, ESL - FreeSWITCH Controlled by Events, introduce Event System and
Event Socket Library, how to tap into FreeSWITCH internal messaging bus to
interact with calls in real time.

Chapter 12, HTTAPI - FreeSWITCH Asks Webserver Next Action, explains how to have
FreeSWITCH to interrogate a webserver in real time at each step of a call
interaction: a handy way to create IVRs.

Chapter 13, Conferencing and WebRTC Video-Conferencing, discusses how to create

and manage audio and video conferences that allows for legacy, mainstream and
WebRTC users to interact and collaborate. Also shows the special advanced features
of Verto Communicator, our sleek Web Real Time Communication client.

Chapter 14, Handling NAT, provides much needed insight into understanding how NAT
causes issues with SIP and how to work around them.

Chapter 15, VoIP Security, offers suggestions on how to secure VoIP communications
from prying eyes as well as securing a FreeSWITCH server against various attacks.

Chapter 16, Troubleshooting, Asking for Help, and Reporting Bugs, shows how to find
out what's wrong when you encounter a problem, how to interact with the wonderful
FreeSWITCH community for getting help, and what to do when you think you've hit a
bug.

What you need for this book
At the very least you will need a computer on which you can run FreeSWITCH.
Typically this is a server although that isn't an absolute requirement. You will also
need at least a couple SIP devices, be them softphones or desk phones, and a couple
browsers as WebRTC clients.

Who this book is for
This book is for prospective FreeSWITCH administrators and application
programmers as well as VoIP professionals who wish to learn more about how to set
up, configure, and extend a FreeSWITCH installation. If you are already using
FreeSWITCH, you will find that the information in this book compliments what you
have already learned from your personal experience.

A solid understanding of basic networking concepts is very important. Previous
experience with VoIP is not required, but will certainly make the learning process
go faster.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning. Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown
as follows: "We can see FreeSWITCH status information by issuing the stuts
command at the FreeSWITCH console."

A block of code is set as follows:

<extension name="get voicemail">
<condition field="destination_number" expression="^*98$">
<action application="answer"/>
<action application="voicemail"
 data="check auth default ${domain_name}"/>
</condition>
</extension>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<extension name="get voicemail">
<condition field="destination_number" expression="^*98$">
<action application="answer"/>
<action application="voicemail"
 data="check auth default ${domain_name}"/>
</condition>
</extension>

Any command-line input or output is written as follows:

/usr/local/freeswitch/bin/fs_cli –x version

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book-what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of. To send us general feedback,
simply e-mailfeedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/su
pport and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Fr
eeSWITCH-1.8. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/FreeSWITCH-1.8
https://github.com/PacktPublishing/

Downloading the color images of this
book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www.packtpu
b.com/sites/default/files/downloads/FreeSWITCH1.8_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/FreeSWITCH1.8_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the
code-we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title. To view the previously submitted
errata, go to https://www.packtpub.com/books/content/supportand enter the name of the book in
the search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy. Please contact us at copyright@packtpub.com with a link to the suspected
pirated material. We appreciate your help in protecting our authors and our ability to
bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us
atquestions@packtpub.com, and we will do our best to address the problem.

Architecture of FreeSWITCH
Welcome to FreeSWITCH! If you are reading this, then you're interested in things
such as real-time communication, WebRTC, telecommunications, and Voice over
Internet Protocol (VoIP). FreeSWITCH is a complete application server and a
flexible toolset, used worldwide to build advanced and future-proof communication
applications. Before looking at the architecture of this powerful software, let's take a
look at the world of telecommunications. This will help to put FreeSWITCH into
perspective.

In this chapter, we will cover:

A communication double revolution
Advantages of FreeSWITCH
Endpoint and Dialplan modules
How FreeSWITCH simplifies complex applications such asvoicemail and
video-conferences

Real-time communication without
mysteries
Real-time communication (RTC) began with telephone during the second half of the
1800s, and almost immediately evolved into a big, worldwide, interconnected
network of big companies and infrastructure.

Until a few years ago, telephony was a walled castle strictly guarded by huge
corporations and almost nobody was able to completely understand how it was
actually working. You got a chance to gain that esoteric knowledge by attending
internal technical seminars and in-house schools, and even that knowledge was
limited to the part of the system you were to work on (central office, last mile, PBX,
and so on). Both the infrastructure carrying and routing the calls, and the applications
answering and managing them, were ad hoc, rigid, not compatible with each other,
and required huge investments.

Then two revolutions completely obliterated that old world. The first one was the
VoIP telephony revolution, which brought an open protocol (SIP) to power, first in
the application/PBX realm, and then in the infrastructure too. First to go was that
steel box containing a proprietary PBX that could only be expanded by changing
internal hardware cards made by that same company, serving only its own kind and
model of hardware phones. It was substituted by a standard server with standard PC
architecture, using off-the-shelf expansion cards, able to support any kind of
standard-compliant phones. SIP then climbed from bottom to top, up to the very core
of Big Telcos infrastructure. Today, all telecommunication infrastructures including
those of Big Telcos and Carriers are running some version of the SIP protocol.

And the second revolution, which is ongoing right now and will take some more
years to complete and bear fruits: WebRTC. This is a very misleading name;
WebRTC does not require web pages and browsers at all. WebRTC is a set of
standards for the encrypted interconnections of communication endpoints. This
WebRTC standard happened to first be implemented in browsers.In the mean time it
has become the mainstream way to communicate in the Internet of Things, spanning
from smartphone apps to cars, lifts, shop cashiers, and point of sale.

Nowadays it's possible to build communication systems that outperform traditional
voice, video, and conference services and offer advanced features for a relatively
low cost. FreeSWITCH has been designed to make all of this easier, and we will go
over its architecture to get a better understanding of how it works.

Don't be concerned if you don't grasp it all in one swoop. Learning takes time,
especially RTC and VoIP. In fact, we recommend that you read this chapter more than
once. Absorb as much as you can on the first pass, then come back after you complete
Chapter 6, XML Dialplan. You will be surprised at how much your understanding of
FreeSWITCH has improved. Then come back and skim it a third time after you have
completed Chapter 10, Dialplan, Directory, and ALL via XML_CURL and Scripts; at
this point, you will have a firm grasp of FreeSWITCH concepts. Give yourself time
to digest all of these new concepts, and soon you will find that you are a skilled
FreeSWITCH administrator.

Today, we live in an ecosystem of multiple RTC technologies, all coexisting at the
same time: telephony systems (such as telephone switches and PBXs), the traditional
analog phone (POTS lines or Plain Old Telephone Service), traditional telephone
networks operated by carriers (PSTN or Public Switched Telephone Network),
mobile phones (CDMA, GSM, LTE, and so on), faxes, WebRTC, smartphone apps,
VoIP phones, and Enterprise systems.

FreeSWITCH's niche is right in the center of this ecosystem: it connects and accepts
connections from all those technologies, it bridges and mixes them together, it
provides interactive applications and services to users whatever their endpoint
happens to be. FreeSWITCH is able to connect to external data services and to
legacy in-house systems, to computer programs and business procedures.
FreeSWITCH runs on Linux, Windows, and Mac OS X, as well as *BSD and
Solaris. We have plenty of hardware choices, from big multiprocessor servers to
Raspberry Pi. So, you can develop on your laptop, and then deploy on datacenter, or
in an embedded device. Installing FreeSWITCH is discussed in detail in Chapter 2,
Building and Installation.

The FreeSWITCH design - modular,
scalable, and stable
The design goal of FreeSWITCH is to provide a modular, scalable system around a
stable switching core, and to provide a robust interface for developers to add to and
control the system. Various elements in FreeSWITCH are independent of each other
and do not have much knowledge about how the other parts are working, other than
what is provided in what are called "FreeSWITCH APIs". The functionality of
FreeSWITCH can be extended with loadable modules, which tie a particular
functionality or an external technology into the core.

FreeSWITCH has many different module types that surround the central core, like
sensors and interfaces connect a robot brain to the external environment. The list
includes the following:

Module type Purpose

Endpoint Telephone protocols such as SIP and PSTN lines.

Application Performs a task such as playing audio or sending data.

Automated
Speech
Recognition (
ASR)

Interfaces with speech recognition systems.

Chat Bridges and exchanges various chat protocols.

Codec Translates between audio formats.

Dialplan Parses the call details and decides where to route the call.

Connects directory information services, such as LDAP, to a

Directory common core lookup API.

Event handlers Allows external programs to control FreeSWITCH.

File Provides an interface to extract and play sound from various audio
file formats.

Formats Plays audio files in various formats.

Languages Programming language interfaces used for call control.

Loggers Controls logging to the console, system log, or log files.

Say
Strings together audio files in various languages to provide feedback
to say things such as phone numbers, time of day, spellings of
words, and so on.

Text-To-Speech
(TTS) Interfaces with text-to-speech engines.

Timers POSIX or Linux kernel timing in applications.

XML Interfaces Uses XML for Call Detail Records (CDRs), CURL, LDAP, RPC,
and so on.

The following diagram shows what the FreeSWITCH architecture looks like and
how the modules orbit the core of FreeSWITCH:

By combining the functionalities of the various module interfaces, FreeSWITCH can
be configured to connect IP phones, POTS lines, WebRTC, and IP-based telephone
services. It can also translate audio formats and provides an Interactive Voice
Response (IVR) system with custom menus. A FreeSWITCH server can also be
controlled from another machine. Let's start by taking a closer look at a pair of
important module types.

Important modules - Endpoint and
Dialplan
Endpoint modules are critically important and add some of the key features that make
FreeSWITCH the powerful platform it is. The primary role of endpoint modules is to
take certain common communication technologies and normalize them into a common
abstract entity, which we refer to as a session. A session represents a connection
between FreeSWITCH and a particular protocol. There are several Endpoint
modules that come with FreeSWITCH, which implement several protocols such as
SIP, H.323, Jingle, Verto, WebRTC, and some others. We will spend some time
examining one of the more popular modules named mod_sofia.

Sofia-SIP (http://sofia-sip.sourceforge.net) is an open source project originally developed by
Nokia, which provides a programming interface for the Session Initiation Protocol
(SIP). FreeSWITCH developers have worked a lot evolving and fixing its original
code base, further enhancing its robustness and features. We use our version of this
library in FreeSWITCH (/usr/src/freeswitch/libs/sofia-sip) in a module named
mod_sofia. This module registers to all the hooks in FreeSWITCH necessary to make
an Endpoint module, and translates the native FreeSWITCH constructs into Sofia SIP
constructs and vice versa. Configuration information is taken from FreeSWITCH
configuration files, which makes for mod_sofia to load user-defined preferences and
connection details. This allows FreeSWITCH to accept registrations from SIP
phones and devices, register itself to other SIP servers such as service providers,
send notifications, and provide services to the phones such as blinking lights and
voicemail.

When a SIP audio/video call is established between FreeSWITCH and another SIP
device, it will show up in FreeSWITCH as an active session. If the call is inbound, it
can be transferred or bridged to IVR menus, hold music (and/or video), or to one or
more extensions. Or, it can be bridged to a newly created outbound call, toward a
PSTN subscriber, or a WebRTC browser, for example. Let's examine a typical
scenario where an internal SIP phone registered as extension 2000 dials extension
2001 with the hope of establishing a call.

First, the SIP phone sends a call setup message to FreeSWITCH over the network
(mod_sofia is listening for such messages). After receiving the message, mod_sofia in turn
parses the relevant details, builds the abstract call session data structure the core
understands, and passes that call into the core state machine in FreeSWITCH. The
state machine (in the FreeSWITCH core) then puts the call into the ROUTING state

http://sofia-sip.sourceforge.net

(meaning looking for a destination).

Core's next step is to locate the Dialplan module based on the configuration data for
the calling Endpoint. The default and most widely used Dialplan module is the XML
Dialplan module. This module is designed to look up a list of instructions from the
XML tree within FreeSWITCH's memory. The XML Dialplan module will parse a
series of XML objects using regular expression pattern-matching.

As we are trying to call 2001, we are looking around for an XML extension where
the destination_number field matches 2001. Also, let's remember the Dialplan is not
limited to matching only a single extension. An incoming call can match more than
one extension in the Dialplan, and in Chapter 6, XML Dialplan, you will get an
expanded definition of the term extension. The XML Dialplan module builds a TODO
list for the call. Each matched extension will have its actions added to the call's
TODO list.

Assuming FreeSWITCH finds at least one extension with a matching condition, the
XML Dialplan will insert instructions into the session object with the information it
needs to try and connect the call to 2001 (the TODO list for this call). Once these
instructions are in place, the state of the call session changes from ROUTING to
EXECUTE, where the core drills down the list and executes the instructions piled
during the ROUTING state. This is where the API comes into the picture.

Each instruction is added to the session in the form of an application name and a data
argument that will be passed to that application. The one we will use in this example
is the bridge application. The purpose of this application is to create another session
with an outbound connection, then connect the two sessions for direct audio
exchange. The argument we will supply to bridge will be user/2001, which is the
easiest way to generate a call to an internal registered phone at extension 2001. A
Dialplan entry for 2001 might look like this:

<extension name="example">
<condition field="destination_number"
 expression="^2001$">
<action application="bridge" data="user/2001"/>
</condition>
</extension>

This extension is named example, and it has a single condition to match. If that
condition is matched, it has a single application to execute. It can be understood as: If
the caller dialed 2001, then establish a connection between the caller and the
endpoint (that is, the phone) at 2001.

Once we have inserted the instructions into the TODO list for the session, the
session's state will change to EXECUTE, and the FreeSWITCH core will start to use

the data collected to perform the desired action(s). First, it will parse the list and
find it must execute bridge on user/2001, then it will look up the bridge application
and pass the user/2001 data to it. This will cause the FreeSWITCH core to create a
new outbound session (that is, a call) of the desired type. Let's assume that user 2001
is registered to FreeSWITCH using a SIP phone. So user/2001 will resolve into a
SIP dialstring, which will be passed to mod_sofia to ask it to create a new outbound
session (toward user 2001's SIP phone).

If the setup for that new session is successful, there will be two sessions in the
FreeSWITCH core, the new session and the original session (from the caller phone).
The bridge application will take those two sessions and call the bridge function on it.
This will make the audio and/or the video stream to flow in both directions once the
person at extension 2001 answers the phone. If that user is unable to answer or is
busy, a timeout (that is, a failure) would occur and a failure message will be sent
back to the caller's phone. If a call is unanswered or an extension is busy, many
reactions can be built in the Dialplan, including call forwarding or voicemail.

FreeSWITCH takes all the complexity of SIP and reduces it to a common (internal to
its core) denominator. Then it reduces the complexity further by allowing us to use a
single instruction in the Dialplan for connecting the phone at 2000 to the phone at
2001. If we also want to allow the phone at 2001 to be able to call the phone at 2000,
we can add another entry in the Dialplan going the other way:

<extension name="example 2">
<condition field="destination_number" expression="^2000$">
<action application="bridge" data="user/2000"/>
</condition>
</extension>

In this scenario, the Endpoint module (mod_sofia) turned incoming SIP call into a
FreeSWITCH session and the Dialplan module (mod_dialplan_xml) turned XML into an
extension. The bridge application (from mod_dptools) turned into a simple
application/data pair the complex code of creating an outbound call and connecting
its media streams. Both the Dialplan module and the application module interface are
designed around FreeSWITCH sessions. Not only does the abstraction make life
easier for us at the user level, it also simplifies the design of the application and the
Dialplan because they can be made agnostic of the actual endpoint technology
involved in the call. It is because of this abstraction that when tomorrow we will
write a new Endpoint module to the 3D holographic communication network we will
be able to reuse all the same applications and Dialplan modules. To the
FreeSWITCH core, and to all of the FreeSWITCH modules, an holographic 3D call
will then appear as just one more standard abstract session.

It is possible that you may want to work with some specific data provided by the

Endpoint's native protocol. In SIP, for instance, there are several arbitrary headers as
well as several other bits of interesting data inside the SIP packets. You may need or
want to access those specific bits of information. We solve this problem by adding
variables to the channel (that is, the part of the session structure that interact with the
endpoint). Using channel variables, mod_sofia can create these arbitrary values as they
are encountered in the SIP data, and you can retrieve them from the channel by
variable name, in your Dialplan or application. Those were originally specific (and
arbitrary) parts of the low-level SIP messages. However, the FreeSWITCH core just
sees them as arbitrary channel variables that the core can ignore. There are also
several special reserved channel variables that can influence the behavior of
FreeSWITCH in many useful ways. If you have ever used a scripting language or
configuration engine that uses variables (sometimes called attribute-value pairs or
AVP, channel variables are pretty much the same concept. There is simply a name
and a value that are passed to the channel, and the data is set.

The application interface for this, the set application, lets you set your own variables
from the Dialplan:

<extension name="example 3">
<condition field="destination_number" expression="^2000$">
<action application="set" data="foo=bar"/>
<action application="bridge" data="user/2000"/>
</condition>
</extension>

This example is almost identical to the previous example, but instead of just placing
the call, we first set the variable foo equal to the value bar. This variable will remain
set throughout the call and can even be referenced at the end of the call in the detail
logs (CDRs).

The more we build things by small pieces, the more the same underlying resources
can be reused, making the whole system simpler to use. For example, the codec
interface knows nothing else about the core, other than its own isolated world of
encoding and decoding audio and video packets. Once a proper codec module has
been written, it becomes usable by any Endpoint interface capable of carrying that
codec in one of its media streams. This means that if we get a text-to-speech module
working, we can generate synthesized speech on any and all Endpoints that
FreeSWITCH supports. The TTS module becomes more useful because it can use
more codecs; the codecs have become more useful because we added a new function
that can take advantage of them. The same idea applies to applications. If we write a
new application module, the existing endpoints will immediately be able to run and
use that application.

Complex applications made simple
FreeSWITCH removes much of the complexity from advanced applications. Let's
look at two examples of a more complex application.

Voicemail
The first application we will discuss is the voicemail application. This application is
useful to add right after the bridge application as a second option, executed in cases
where the call was not completed. We can do this with one of those special variables
that we were discussing earlier. Let's look at a version of our last extension that also
allows us to leave a voicemail:

<extension name="example 4">
<condition field="destination_number" expression="^2000$">
<action application="set"
 data="hangup_after_bridge=true"/>
<action application="bridge" data="user/2000"/>
<action application="voicemail"
 data="default ${domain} 2000"/>
</condition>
</extension>

Here, we see two uses of channel variables. First, we set hangup_after_bridge=true
telling the system to hang up once we have have successfully bridged the call to
another phone and to disregard the rest of the instructions. We are using the domain
variable in brackets prefixed with a dollar sign, ${domain}. This is a special variable
that defaults to the auto-configured domain name, which comes from the XML
configuration.

In this example, we check if someone is dialing 2000. We then try to bridge the call to
the user which endpoint is registered to extension 2000. If the call fails or if there is no
answer (for example, if the bridge attempt has failed, so we do not execute the hangup
after the bridge), we will continue to the next instruction, which is to execute the
voicemail application. We provide the information the application needs to know (for
example, which domain the voicemail belongs to) and which extension the voicemail
is for, so the application knows how to handle the situation. Next, the voicemail
application plays the pre-recorded greeting or generates one using the Say module's
interface, which we briefly discussed earlier. It then plays short sound files one after
each other to make a voice say something like The person at extension 2 0 0 0 is not
available, please leave a message. Next, mod_voicemail prompts you to record a
message. As an additional feature, if you are not convinced with your recording, you
can listen and re-record it as many times as you wish. Once you finally commit, a
FreeSWITCH MESSAGE_WAITING event is fired into the core event system queue,
which is picked up by mod_sofia by way of an event consumer, and the event
information is translated into SIP-in this case a SIP NOTIFY message that lets the SIP
phone know that there is a message waiting. A blinking lamp (Message Waiting
Indicator (MWI)) lights upon the receiving phone.

In this example, not only have we seen how to play a greeting, record a message, and
transform it into a voicemail for a user, we have also met an important part of the
FreeSWITCH core-the event system. The FreeSWITCH event system is not an
additional module interface like the previous examples, it is a core engine feature
that you can use to bind to named events and react accordingly when an event is
received. In other words, throughout the FreeSWITCH core, there are events that are
sent and received. Modules can bind to (that is listen for) various events. They can
also fire events into the event engine; other modules can listen for those events. You
can think of it as similar to other queuing systems such as RabbitMQ (actually, there
is a module to interface the internal event system of a FreeSWITCH server with
RabbitMQ, so you can integrate it into an enterprise queuing system, and/or having
multiple FreeSWITCH servers be parts of the same big, distributed queue). As we
discussed, the Sofia SIP module binds to (subscribes to) the event designated for
MESSAGE_WAITING information. This allows our mod_voicemail module to interact
with mod_sofia without either system having any knowledge about the other's existence.
The event is blindly fired by mod_voicemail (fire and forget, in military parlance),
intercepted (received, because has subscribed to) by mod_sofia, and translated into the
proper SIP message-all courtesy of the event system.

There are several challenges with such a complex system of concatenating sounds
when considering all of the possible languages it may need to support, as well as
what files to play for the automated messages and how they are strung together. The
Say module supplies a nice way to string files together, but it is limited to something
specific, such as spelling a word, counting something, or saying a certain date. The
way we overcome this is by defining a more complex layer on top of the Say module
called Phrase Macros. Phrase Macros are a collection of XML expressions that pull
out a list of arguments by matching a regular expression and executing a string of
commands. This is very similar to how the XML Dialplan works, only custom-
tailored for IVR scenarios. For example, when mod_voicemail asks you to record your
message, rather than coding in the string of files to make it say what you want, the
code just calls a phrase macro called voicemail_record_message. This arbitrary series of
sound bites is defined in the Phrase Macro section in the XML configuration allowing
us, the administrators, to edit the phrase without modifying the Voicemail IVR
program:

<macro name="voicemail_record_message">
<input pattern="^(.*)$">
<match>
<action function= "play-file"
 data="voicemail/vm-record_message.wav"/>
</match>
</input>
</macro>

When mod_voicemail executes the voicemail_record_message macro, it first matches the

pattern, which, in this case, is to match everything, because this particular macro has
no use for input (that is, whatever input you give it, is not used). If the macro did use
the input, the pattern matching could be used to play different sound bites based on
different input. Once a match is found, the XML match tag is parsed for action tags
just like in our Dialplan example. This macro only plays the file vm-record_message.wav,
but more complicated macros, like the ones for verifying your recording or telling
you how many messages you have in your inbox, may use combinations of various
Say actions and play many different audio files. Phrase Macros are discussed in
detail in Chapter 6, XML Dialplan, and used extensively in Chapter 8, Lua FreeSWITCH
Scripting.

Here too, we can see co-operation between various parts of FreeSWITCH
architecture: the phrase system, the audio file, and the Say modules loaded by the
core are used together to enable powerful functionalities. The Say modules are
written specifically for a particular language or voice within a language. We can
programmatically request to say the current time and have it translated into Spanish
or Russian sounds by the proper Say module based on input variables. The Phrase
Macro system is a great way to put a layer of abstraction into your code, which can
be easily tweaked later by system administrators. For example, if we wanted to make
a small IVR that asks us to dial a four-digit number, then reads it back and hangs up,
we could make one macro called myapp_ask_for_digits and the other called
myapp_read_digits. In our code, we would execute these macros by name-the former
when it is time to ask for the digits and the later to read back the digits by passing in
the value we entered. Once this is in place, a less-experienced individual (for
example, a local administrator) could implement the XML files to play the proper
sounds. She can use the Say modules to read back the number, and it should all be
working in multiple languages with no further coding necessary. Voicemail is just one
example of using FreeSWITCH as an application server. There are endless
possibilities when we use FreeSWITCH to connect real-time communication with
computers.

Multi-party audio/video conferencing
Another important feature of FreeSWITCH is delivered by the mod_conference
conferencing module. The mod_conference provides dynamic conference rooms that can
bridge together the audio and video from several users. It may mix video streams
together, applying CG (computer graphics) transformations to them, such as
composing a live feed of different conference participants together, over imposing a
caption with the name and role to each users' video stream, sharing the screen of each
participant computer (for example, a PowerPoint presentation), and so on. Also, a
real-time chat can be added to the conference, so participants can exchange text
messages out of band from the main audio/video stream. Obviously, this same module
can also be used for plain regular audio conference calls.

Each new session that connects to the same conference room will join the others, and
instantly be able to talk and see all of the other participants at the same time (as per
the whim of the conference admin, who can choose who to display, who can talk, and
so on). Using an example similar to the one we used for bridging to another phone,
we can make an extension to join a conference room:

<extension name="example 4">
<condition field="destination_number" expression="^3000$">
<action application="conference" data="3000@default"/>
</condition>
</extension>

This is as simple as bridging a call, but with a conference application many callers
can call the same extension (3000 in this case) and join the same conference room. If
three people joined this conference and one of them decides to leave, the other two
would still be able to continue their conversation.

The conference module also has other special features, such as the ability to play
sound or video files or text-to-speech to the whole conference, or even to a single
member of the conference. As you may have guessed, we are able to do this by using
the TTS and video/sound file interfaces provided by their respective modules. The
smaller pieces come together to extend the functionality without needing knowledge
of each other.

The conference module also uses the event system in an additional way, employing
what are called custom events. When it first loads, a module can reserve a special
event namespace called a subclass. When something interesting happens, such as
when a caller joins or leaves a conference, it fires those events on the CUSTOM
event channel in the core queue. When we are interested in receiving such events, all
we have to do is subscribe to the CUSTOM event by supplying an extra subclass

string, which specifies the specific CUSTOM events we are interested in. In this
case, it is conference::maintenance. This makes it possible to look out for important
things such as when someone joins or leaves the conference, when they start and stop
talking, when they are displayed on video, or what video layout (screen disposition)
is currently in use. Conferencing is discussed in detail in Chapter 13, Conferencing and
WebRTC Video-Conferencing.

FreeSWITCH API commands (FSAPI)
Another very powerful FreeSWITCH concept is the FSAPI. Most API commands are
implemented in mod_commands, and almost all other modules add some to the
commands that are executable via FSAPI. FSAPI mechanism is very simple-it takes a
single string of text as input, which may or may not be parsed, and performs a
particular action. The return value is also a string that can be of any size, from a
single character up to several pages of text, depending on the function that was called
by the input string. One major benefit of FSAPI functions is that a module can use
them to call routines in another module without directly linking into the actual
compiled code (thus avoiding sudden incompatibilities and crashes). The most
egregious example is the command-line interface of FreeSWITCH or CLI, which
uses FSAPI functions to pass FreeSWITCH API commands.

Here is a small example of how we can execute the status FSAPI command from the
FreeSWITCH CLI:

What's really happening here is that when we type status and press the Enter key, the
word status is used to look up the status FSAPI function from the module in which it
is implemented. The underlying function is then called (passing it the arguments if
they were typed, in this case none), and the core is queried for its status message.
Once the status data is obtained, the output is written to a stream that prints a string.

We have already learned that a module can create and export FSAPI functions that
can be executed from anywhere such as the CLI. But there's more. Modules can also
be written to execute commands via the FSAPI interface and then send the results
over a specific protocol. There are two modules included in FreeSWITCH that do
just that-mod_xml_rpc and mod_event_socket (discussed in Chapter 10, Dialplan, Directory,
and ALL via XML_CURL and Scripts, and Chapter 11, ESL - FreeSWITCH Controlled
by Events respectively). Consider the example of mod_xml_rpc. This module implements
the standard XML-RPC protocol (Remote Procedure Call via XML strings) as a
FreeSWITCH module. Clients using whatever standard XML-RPC interface can
connect to FreeSWITCH and execute FSAPI commands. So a remote client could
execute an RPC call to status, and get a similar status message to the one we saw in

the previous example. This same module also provides FreeSWITCH with a
listening web server, which allows FSAPI commands to be accessed froma direct
URL link. For example, one could point a browser to
http://example.freeswitch.box:8080/api/status to execute the status command directly over
HTTP. By using this technique, it's possible to create FSAPI commands that work
similar to a CGI, providing a dynamic web application that has direct access to
FreeSWITCH internals (for a more advanced HTTP integration, you may want to
check the HTTAPI module in Chapter 12, HTTAPI - FreeSWITCH Asks Webserver Next
Action).

As we have shown, the FSAPI interface is very versatile. Now we know it can be
used to provide a CLI interface, a way for modules to call functions from each other,
and a way to export HTTP or XML-RPC functions. There is still one more use for
FSAPI functions that we have not covered. We touched briefly on the concept of
channel variables earlier, noting that we can use the expression ${myvariable} to get the
value of a certain variable. FSAPI functions can also be accessed this way in the
format ${myfunction()}. This notation indicates that the FSAPI command myfunction
should be called, and that the notation should be replaced with the output of that
function call. Therefore, we can use ${status()} anywhere when variables are
expanded to gain access to the output of the status command. For example:

<action application="set" data="my_status=${status()}"/>

The value placed in the my_status variable will be the string output from the status
command.

Most FSAPI commands can be easily accessed using all of the ways we have
discussed. Some commands only make sense when accessed via a particular method.
For instance, if we made an FSAPI command that produced HTML intended to be
accessed with a web browser, we would probably not want to access it from the CLI
or by referencing it as a variable. But, never say never, there are cases where it can
be useful, and you have the flexibility to do it.

The XML registry
We discussed many of the fundamental components of the FreeSWITCH core and
how they interact with each other. We have seen how the event system can carry
information across the core to the modules, and how the XML Dialplan can query the
XML registry for data. This would be a good time to explain the XML registry a bit
more. The XML registry is the XML tree document that holds all of the critical data
that FreeSWITCH needs to operate properly. FreeSWITCH builds that document by
loading a file from your hard drive and passing it to its own pre-processor. This pre-
processor can include other XML documents and execute other special operations,
such as setting global variables. Global variables will then be resolved by
FreeSWITCH when they're used further down in the document tree.

Once the entire document and all of the included files are parsed, replaced, and
generated in a static XML document, this final static document (with all global
variables substituted for) is loaded into memory. The XML registry (tree) is divided
into several sections- configuration, dialplan, directory, chat plan, languages,
phrases, etc. The core and the modules draw their configuration from the
configuration section. The XML Dialplan module draws its Dialplan data from the
dialplan section. SIP and Verto authentication, user lookup, and the voicemail module
read their account information from the directory section. The Phrase Macros pull
their configuration from the phrases section. If we make a change to any of the XML
files on the disk, we can reload the changes into memory by issuing the reloadxml
command from the CLI If we change the values assigned to one of the global
variables, we will need to restart FreeSWITCH to apply the new value, reloadxml will
not be enough.

Scripting language modules
Scripting language modules embed a programming language like Lua, JavaScript,
Perl, C#, and so on, into FreeSWITCH, and transfer functionality between the core
and the language's runtime. This allows things like IVR applications to be written in
that scripting language, with a simple interface back to FreeSWITCH for all the
heavy lifting. Language modules usually register into the core with the application
interface and the FSAPI interface and are executed from the Dialplan. Language
modules offer lots of opportunities and are very powerful. Using language modules,
you can build powerful real-time communication applications in a standard
programming language you already know, using its libraries for data manipulations
and legacy interfacing.

The demo configuration
Understanding all of these concepts right off the bat is far from easy, and as
maintainers of the software, we do not expect most people to have everything just
click. This is the main reason that every new layer we put on top of the core makes
things simpler and easier to learn. The demonstration configuration of FreeSWITCH
is the last line of defense between new users of the software and all of the crazy,
complicated, and sometimes downright evil stuff better known as Real Time
Communication. We try very hard to save the users from such things.

The main purpose of the demonstration configuration in FreeSWITCH is to showcase
all of the hundreds of parameters there are to work with. We present them to you in a
working configuration that you could actually leave untouched and play with before
trying your own hand at changing some of its options. Think of FreeSWITCH as a
Lego set. FreeSWITCH and all of its little parts are like a brand new bucket Lego
bricks, with plenty of parts to build anything we can imagine. The demonstration
configuration is like the sample spaceship that you find in the instruction booklet. It
contains step-by-step instructions on exactly how to build something you know will
work. After you pick up some experience, you might start modifying your Lego ship
to have extra features, or rebuild the parts into a car or some other creation.
Obviously, you can leave outmany, or most, of the features built in that configuration
and use only what is useful in your specific deployment. The good news about
FreeSWITCH is that it comes out of the box already assembled. Therefore, unlike the
bucket of Lego bricks, if you get frustrated and smash it to bits, you can just re-install
the defaults and you won't have to build it again from scratch. The demonstration
configuration is discussed in Chapter 3, Test Driving the Example Configuration.

Once FreeSWITCH has been installed, you only need to start its executable without
changing one line in the configuration file. You will be immediately able to point a
SIP telephone or software-based SIP softphone to the address of your server (be it
your laptop, a virtual machine, a 48-core server, a Raspberry Pi, or an Amazon
instance), make a test call, and access all of the functionalities of FreeSWITCH.
Interfacing with other protocols will require additional configurations (such as
installing SSL certificates for WebRTC and the like), but the end results will be
exactly the same. If you have more than one phone, using the default configuration you
should be able to configure them to each having an individual extension in the range
1000-1019, which is the extension number range that is predefined in the
demonstration configuration. Once you get the phones registered, you will be able to
make calls across them or have them meet in a conference room in the 3000-3399
range. If you call an extension that is not registered, or let the phone ring on another

extension for too long, the voicemail application will use the phrase system to
indicate that the party is not available, and ask you to record a message. If you dial
5000, you can see an example of the IVR system at work, presenting several menu
choices demonstrating various other neat things FreeSWITCH can do. There are a lot
of small changes and additions that can be made to the demonstration configuration
while still leaving it intact.

For example, using the pre-processor directives we went over earlier, the
demonstration configuration loads a list of files into the XML registry from certain
places, meaning that every file in a particular folder will be combined into the final
XML configuration document. The two most important points where this takes place
are where the user accounts and the extensions in the Dialplan are kept. Each of the
20 extensions that are preconfigured with the defaults are stored into their own file.
We could easily create a new file with a single user definition, drop it into place to
add another user, and issue the reloadxml command at the FreeSWITCH CLI. The same
idea applies to the example Dialplan. We can put a single extension into its own file
and load it into place whenever we want.

Summary
FreeSWITCH is a complex system of moving parts that are integrated to produce a
solid, stable core with flexible and easy-to-extend add-ons. The core extends its
interfaces to modules. The modules also can bring outside functionalities into
FreeSWITCH by translating various communication protocols into a common,
abstract, internal format. We looked at the various module types, and demonstrated
how they revolve around the core and interact with each other to turn simple abstract
concepts into higher-level functionalities. We described a few of the more popular
applications in FreeSWITCH-the conferencing and voicemail modules and how they,
in turn, make use of other modules without ever knowing it. This agnosticism is
accomplished by means of the event system. We also saw how the demonstration
configuration provides several working examples to help take the edge off of an
otherwise frightening feat of staring down the business end of a full-featured soft-
switch.

In the following chapter, we will take our first steps towards getting a FreeSWITCH
system up and running.

Building and Installation
FreeSWITCH is open-source software. So, you will always be able to obtain its
source code for free. Also, it is a special kind of open source: you can modify it (or
ask some hired consultant to modify it on your specs), build your product on top of it,
and sell it, with no need to distribute your modifications or to pay any royalties (it is
covered by the BSD like license). In fact, with or without your modifications,
building and installing FreeSWITCH from source code is simple. We'll look into it in
this chapter.

FreeSWITCH can be compiled and installed on Linux, Windows, *BSD, and OSX,
on a range of hardware that spans 96 cores big datacenter servers to Raspberry Pi,
from VMWare to KVM virtual machines, and from LXC containers to AWS instances.

For each and every platform, FreeSWITCH depends on a lot of pre-requisites, many
libraries, tools, and programs, both for being compiled and for running. Obviously,
for your comfort, we have automated those pre-requirements' installation on the most
popular platforms.

Also, we make available ready-made packages for the most popular Linux
distributions (Debian, CentOS/RHEL, Ubuntu). We'll look into this too.

In this chapter, we'll look at how to download and install FreeSWITCH from source
code, and how to install it from ready-made packages.

Finally, we will explain how to launch FreeSWITCH and how to run it in the
background (as daemon, or service).

In this chapter, we will cover the following topics:

Choosing the platform on which to install FreeSWITCH
Choosing between installing from source code or from ready-made packages
Installing FreeSWITCH on Linux and Windows
Launching FreeSWITCH and running it in the background

Where to Install FreeSWITCH
FreeSWITCH can be installed on almost anything, which is good for testing,
developing, and opens up a wealth of different use cases (think embedded systems
and Internet of Things).

For production systems and, particularly for mission-critical systems (think the PBX
of your company, or a taxi dispatching service, or your hot startup WebRTC-enabled
commercial videoconferencing-cum-translation service), you have three choices: use
the platforms we counsel (the most tried and true), or know exactly what you're doing
(hint: it is impossible you know so much about FreeSWITCH internals), or ask for a
qualified consultancy. That's important not only to save on time, money, efforts, and
frustrations, but so much more for the ongoing support, bug fixing, features upgrade,
and platform evolution.

Choice of Operating System
Which operating system is best for running FreeSWITCH in production? Choose the
one that is the most used in your company, the one in which you have most expertise,
and the one you feel comfortable with and where you know where to look for
support. As long as you choose one of the counseled operating systems, we've got
your back covered.

Please note that on Linux it may appear easy to compile and run FreeSWITCH on a
distro different from the supported ones. It's still Linux, isn't? Wroooong!
FreeSWITCH is a complex server application that, particularly for video mixing and
massaging, has a lot of very specific dependencies. So, you may find it easier to
compile and run FS on a different Linux distro (and we'd love to hear of your
success) if you avoid video-related modules.

If there are no special considerations (for example, embedded systems) always use a
64-bit operating system; they're the most optimized for modern servers' hardware,
both at the kernel level and at the libraries level. Particularly, avoid using 32-bit OS
and virtual machines on 64-bit hardware. There have been multiple reports of
incompatibility, and plainly speaking, it's not worth looking for unknown unknowns.

Linux
Debian 8 (Jessie) 64bit is the most counseled, deployed, and tested Linux distro, and
it's the platform on which most FreeSWITCH development is primarily done. If
you're into Linux, and in doubt about which distro to use, definitely use Debian
Jessie. All libraries, dependencies, kernel features, and so on are tested each minute
for FreeSWITCH usage in every possible configuration, use-case, and work load.
Debian (Raspbian) is used on Raspberry Pi too, and the Pi3 has enough horsepower
to handle video. Immediate runners up as Linux distros for FreeSWITCH are
CentOS/RHEL 7 and Ubuntu 16.04 (Xenial). Please be aware that Ubuntu tends to be
a little too much on the bleeding edge, to update packages and libraries often, even in
Long Term Support (LTS) versions. We support Ubuntu, we even distribute ready-
made packages, but if you don't have a strict company policy, go for Debian. If you
come from Ubuntu you'll find yourself completely at home, and on the safe,
conservative side. FreeSWITCH 1.8 announcement stated there will be support for
Debian 9 "Stretch", that over time will become the preferred Linux distro.
Support for Stretch will probably be backported to FreeSWITCH 1.6, but please
check our http://freeswitch.org/confluence official documentation for up to the minute
updates.

http://freeswitch.org/confluence

Windows
Windows is the most popular OS for running FreeSWITCH after Linux. In a lot of
Windows shops, FS happily chugs along with the whole Microsoft ecosystem, and it
has supported C# since forever. We provide .msi installers, both for 64-
(recommended for server class machines) and 32-bit Windows. Also, you can
compile from source code using the free (as in beer) versions of Microsoft Visual
Studio (for example, Express and Community).

OS X (Mac)
Many developers compile and run FreeSWITCH on their Macs, and there is an
automated macOS FreeSWITCH Installer (macFI) that makes all the many
procedures involved as easy as click and go to lunch. OS X is supported for versions
10.12 (Sierra), 10.11 (El Capitan), and 10.10 (Yosemite). Running FreeSWITCH in
production on Mac servers would be original, but... why not?

*BSD
FreeSWITCH should compile and install cleanly on FreeBSD. Now and then there
are rumors about FreeSWITCH on OpenBSD and other BSD derivatives. At least the
core and the most popular modules (except video modules) would probably compile
easily with little modification from the FreeBSD port.

Packages or Source?
Installing executables from packages or installers is the easiest way to go and
requiresfewer dependencies (you will need no source-code downloading, no code-
compilation tools, or development libraries. And that's a lot of stuff!). This is by far
less time consuming.

One downside is that you end up with a directory structure that's different from what
you will read in this book, or in anyFreeSWITCH documentation. That is because
each Operating System, and each Linux distribution, requires packages to install stuff
in a specific directories layout, for example, executables in /usr/bin/ and
documentation in /usr/share/doc/freeswitch/. Also, each Linux distribution may have its
own specific locations for particular files. Contrast this with the results of installing
FreeSWITCH from source with default "configur" values: all will be installed in a
tree under /usr/local/freeswitch/.

We'll see below that at the end of installation from packages, we'll create symlinks to
mimic the default source installation and conform to documentation.

Installing FreeSWITCH
Here we'll cover in brief the steps needed for a successful FreeSWITCH installation
on two of the most popular platforms. Please be sure to check our documentation at htt
p://www.freeswitch.org/confluence for instructions updated to the minute (FS is evolving!).

http://freeswitch.org/confluence

Debian 8 Jessie
This is the reference platform, the most deployed and the one on which most
development is first done before being ported to other OSs and distros. If in doubt
about which Linux distro to use, use this one. On Debian, both installing from source
and installing from packages is supported and is mostly automated.

FreeSWITCH 1.8 announcement stated there will be support for Debian 9 "Stretch",
that over time will become the preferred Linux distro.
Support for Stretch will probably be backported to FreeSWITCH 1.6, please check
our http://freeswitch.org/confluence official documentation for up to the minute updates.

Be sure to start from a freshly deployed, updated, clean, bare Debian 8 (Jessie)
Server 64 bit. You may want to use the netinst mini-image to minimize the initial
download from Debian servers (because the packages will likely need to be updated
anyway), or you can start from a regular Debian 8 installation medium.

If you don't have specific requirements, you can accept all default choices proposed
by the instructions on screen. At the end of Debian deployment, when asked about
software selection, choose only (pressing spacebar on the list items) the SSH server
and the standard system utilities; we will install all other needed packages during the
following steps ourselves:

After software selection, finish Debian deployment in the usual way, following the

http://freeswitch.org/confluence

instructions on screen.

Then connect via ssh, and install and set the default locale to your preference
(en_US.UTF-8UTF-8 can be a good default), using the CLI command

 dpkg-reconfigure locales:

Then click OK.

Then logout and login again, or better yet, reboot the machine altogether.

We can now start installing FreeSWITCH.

From Packages
In a new, bare, clean Debian 8 64-bit machine, execute the following as root, from
the command line (following is repository for FreeSWITCH 1.6; for 1.8, please
search for latest instructions on http://freeswitch.org/confluence):

 apt-get update
 apt-get -y upgrade
 apt-get install -y wget ca-certificates
 wget -O - https://files.freeswitch.org/repo/deb/debian/freeswitch_archive_g0.pub | apt-key add -
 echo "deb http://files.freeswitch.org/repo/deb/freeswitch-1.6/ jessie main" > /etc/apt/sources.list.d/freeswitch.list
 apt-get update
 apt-get install -y freeswitch-meta-all

A FreeSWITCH installation, complete with all its accessories, files, and default
configuration, is now deployed on the machine.

We still have an (optional, but very useful) thing to do, because the layout on hard
disk after a package installation is different from what you will read in this book and
in all documentation. We create the /usr/local/freeswitch directory that is referred to
everywhere in docs, and symlinks from there to the various FreeSWITCH
components. Again, as root, from the command line, execute the following:

 mkdir -p /usr/local/freeswitch/bin
 ln -s /usr/bin/freeswitch /usr/local/freeswitch/bin/
 ln -s /usr/bin/fs_* /usr/local/freeswitch/bin/
 ln -s /usr/bin/fsxs /usr/local/freeswitch/bin/
 ln -s /usr/bin/tone2wav /usr/local/freeswitch/bin/
 ln -s /usr/bin/gentls_cert /usr/local/freeswitch/bin/
 ln -s /etc/freeswitch /usr/local/freeswitch/conf
 ln -s /var/lib/freeswitch/* /usr/local/freeswitch/
 ln -s /var/log/freeswitch /usr/local/freeswitch/log
 ln -s /var/run/freeswitch /usr/local/freeswitch/run
 ln -s /etc/freeswitch/tls /usr/local/freeswitch/certs
 ln -s /usr/lib/freeswitch/mod /usr/local/freeswitch/
 rm /usr/local/freeswitch/lang

We have now installed from packages a complete FreeSWITCH system, stable,
always up to date with the latest security, bug fixes, and features, and completely
compatible with official documentation, community knowledge, and broscience.

Now, reboot the machine and you'll find FreeSWITCH is automatically run as
freeswitch user (and freeswitch group).

We update the whole platform periodically using the command line (as root):

 apt-get clean
 apt-get update
 apt-get dist-upgrade

http://freeswitch.org/confluence

From Source
Again, on a new, bare, clean Debian 8 64-bit machine, connect via ssh and execute as
root, from the command line:

 apt-get update
 apt-get -y upgrade
 apt-get install -y wget ca-certificates git
 wget -O - https://files.freeswitch.org/repo/deb/debian/freeswitch_archive_g0.pub | apt-key add -
 echo "deb http://files.freeswitch.org/repo/deb/freeswitch-1.6/ jessie main" > /etc/apt/sources.list.d/freeswitch.list
 apt-get update
 apt-get install -y --force-yes freeswitch-video-deps-most

At this point, we'll see that an enormous amount of software is installed on our
machine. Those are all dependencies needed to build FreeSWITCH from source.
You'll end up with a complete developer suite, tools, libraries, and languages; all
that's needed for FS development is there, already installed.

After a while, the mega-dependencies-galore has finished, and we can go forward to
the next steps: downloading, compiling, and installing FreeSWITCH source code,
demo configuration, and related accessory files:

 git config --global pull.rebase true
 cd /usr/src/
 git clone https://freeswitch.org/stash/scm/fs/freeswitch.git -bv1.6 freeswitch
 cd freeswitch
 ./bootstrap.sh -j
 ./configure
 make
 make install
 make cd-sounds-install cd-moh-install

All those steps will take a while to finish, and you'll end up with a complete
FreeSWITCH system, stable, always up to date with the latest security, bug fixes, and
features, and completely compatible with official documentation, community
knowledge, and broscience. (YES, you end up with the same stuff as if you had
installed from packages. But maybe you want to be able to modify the sources and
recompile).

We need one more step for running FreeSWITCH in the recommended way, avoiding
to have it all, files, executables, processes owned by root. Let's create a specific
freeswitch user, which will own the files that belong to the FreeSWITCH server.
That same freeswitch user will also run the FS processes (see the systemd paragraph):

 cd /usr/local
 groupadd freeswitch
 adduser --disabled-password--quiet --system --home /usr/local/freeswitch --gecos "FreeSWITCH open source softswitch" --ingroup freeswitch freeswitch
 chown -R freeswitch:freeswitch /usr/local/freeswitch/
 chmod -R ug=rwX,o= /usr/local/freeswitch/
 chmod -R u=rwx,g=rx /usr/local/freeswitch/bin/*

Now we are ready to blend FreeSWITCH into the Debian automation and
management framework, by letting systemd manage the start, stop, and restart of its
processes. First, we install from source the systemd unit for FreeSWITCH, edit it, and
then we enable it to be run at each boot:

 cp /usr/src/freeswitch/debian/freeswitch-systemd.freeswitch.service /etc/systemd/system/freeswitch.service

Now edit that new file to reflect the locations under the /usr/local/freeswitch/
directory. Specifically, edit the following lines:

PIDFile=/usr/local/freeswitch/run/freeswitch.pid
ExecStart=/usr/local/freeswitch/bin/freeswitch -u freeswitch -g freeswitch -ncwait -nonat -rp

Then tell systemd to reload its configs, start FreeSWITCH, and enable it to start
automatically at boot:

 systemctl daemon-reload
 systemctl start freeswitch
 systemctl enable freeswitch

Now, reboot the machine and you'll find FreeSWITCH is automatically run as
freeswitch user (and freeswitch group).

We can update the whole platform periodically via the command line (as root):

 apt-get update
 apt-get dist-upgrade
 cd /usr/src/freeswitch
 make current

Whatever the method we choose for installation, from ready-made packages or
source, after FreeSWITCH has been started, we can connect to and manage it via the
fs_cli executable, found in /usr/local/freeswitch/bin:

Windows
FreeSWITCH is Windows-native by design, since the beginning. Windows is not a
port or an afterthought, but an integral part of FreeSWITCH architecture, whose core
makes heavy use of the APR libraries, the same that allows for the huge scalability
and cross-platform performance of Apache.

The recommended way to deploy FreeSWITCH in Windows is by using the MSI
installer:

So, in a browser, go to http://files.freeswitch.org/windows/installer/, choose your architecture
(x64 is recommended), choose release, right-click on it, and save as on your desktop:

Then, double click on the FreeSWITCH Installer icon, and give it authorization to
run:

http://files.freeswitch.org/windows/installer/

After accepting the license, choose a Typical installation.

Then, click on Install:

After a while, the installer will finish working its magic:

You will then find a neat standard FreeSWITCH directory tree under C:\Program
Files\FreeSWITCH\, complete with all standard demo sound files, and executables:

Also, in directory "conf" you'll find already installed the demo configuration with all
the files we'll talk about in next chapters.

You'll feel completely at home following this book and the other FreeSWITCH
documentation: the only things that are different from Linux are the root path (in this
case, C:\Program Files\FreeSWITCH instead of /usr/local/freeswitch) and the path separator

(backslash \ instead of slash /). Your FreeSWITCH deployment is still configured by
the same XML files and uses the same set of sound files as its Linux sibling.

Now it is time to register FreeSWITCH with the Windows Firewall, so it will be
allowed to accept incoming connections (network packets). For this, use the
executable FreeSwitchConsole.exe found in the installation root directory (in our case,
C:\Program Files\FreeSWITCH). Double-click on it. This will start FreeSWITCH in the
foreground, as a normal program (as opposed to a background service program), and
will cause Windows to ask you if FS can be authorized to accept and make network
connections. Give it all authorizations. Then, type fsctl shutdown in the console.

FreeSWITCH has been registered as a service by the installer, so you can start and
stop it from the Services applet, and you can enable it to be run at boot (Automatic
Startup Type):

Once FreeSWITCH is started as a service, you connect to it and interact with it using
the Windows equivalent of Linux fs_cli, named fs_cli.exe, found in the installation
root directory (in our case, C:\Program Files\FreeSWITCH). Double-click on it:

Warm and fuzzy, isn't it?

Summary
In this chapter, we covered a lot of ground:

On which platform FreeSWITCH can be installed
Preferred Platforms
How to Install FreeSWITCH on Debian Linux
How to install FreeSWITCH on Microsoft Windows
How to start FreeSWITCH as a background server (for example, daemon,
service)
How to connect to it for management via fs_cli

In the next chapter, we will delve into the features available in the demo
configuration that has been installed by default.

Test Driving the Example
Configuration
After a default installation, out of the box, you'll find that FreeSWITCH is already
able to do an astonishing amount of things! We've put a lot of effort into writing the
mother of all demos, and the configuration that gets installed by default is just that, a
big FreeSWITCH demo. When we add a new feature to FreeSWITCH, when we
write a new module, or when someone comes out with a novel, clever way to use
FreeSWITCH, we add some lines to the example configuration. Please note, we'll
repeat that again later, that the example demo configuration is not intended at all to be
used in a production system. In it, you'll find a mine of snippets waiting for you to
reuse, techniques to do things, and many different ways to organize information about
users, gateways, applications, context, and scripts. It is an enormous repository of
FreeSWITCH applied knowledge, and is working right at the end of installation. So,
please use it until you feel acquainted with the basics of FreeSWITCH, and then
come back to reading it when you're looking for a way to add a feature or execute a
task.

In this chapter, we will cover the following topics:

Important VoIP and FreeSWITCH concepts
Using the FreeSWITCH command-line interface (fs_cli)
Configuring a phone to work with FreeSWITCH
Calling various extensions in the system

Important concepts to understand
FreeSWITCH is the ultimate toolset for any kind of RealTime Communication
service and action: from WebRTC-enabled videoconference cum chat & screen
sharing to enterprise unified communication, from multitenant PBX in the Cloud to
Carrier Grade VoIP Media Server. This implies a lot of flexibility. FreeSWITCH can
do a great number of things, has lot of ready-made features, and many tasks can be
accomplished by FreeSWITCH in more than one way.

We implemented many ways to harness this flexibility. One important aspect is that
FreeSWITCH follows the good practice of behaving as expected. There are many
conflicting requirements in the Real Time Communication world. Also, there are a lot
of software and devices out there, and most of them have their own quirks. They bend
and extend the official protocols (for example, IETF's RFCs). Or, they are plainly
bugged, wrong, and subtly incompatible. Remember, our interoperable world is the
heir of the many proprietary worlds where each vendor was (no more?) trying to lock
in his customers with features and implementations not compatible with those of the
competition. FreeSWITCH implements a policy of being very open-minded and
forgiving in what it accepts as input,and of being very strict and protocol-observing
in what it outputs. So, we're totally tolerant of the many interpretations of SIP,
WebRTC, TDM, and all other protocols, standards, and media out there. We
implemented a lot of workarounds to automatically and transparently manage all the
quirks each device or software has. At the same time, we adhere meticulously to the
letter and the spirit of the open standards, striving for universal compatibility and
interoperability. Most of the time, FreeSWITCH features just work with each and any
software and device you connect it to. And in the rare cases this does not happen
transparently right out of the box, you can be sure there is a configuration tweak that
can solve your problem; just check the docs, or ask online.

In this chapter, we'll embark in a journey through the example demo configuration and
we'll get a taste of what is possible with FreeSWITCH, and a grasp of some basic
concepts. The rest of this book will build up starting from here and expand/deepen
the various aspects involved into implementing and managing your own production
FreeSWITCH platform.

The most important concepts we will encounter throughout this book are those of
XML configurations, regular expressions, and call legs.

XML Configuration
FreeSWITCH understands its configuration in terms of an all-encompassing XML
tree. That XML tree is continuously searched and queried, as long as FreeSWITCH is
running. Each time the FreeSWITCH core, or one of the modules, needs whatever
information from the configuration, they ask (again and again) for that specific
snippet of configuration. For example, let's imagine a SIP phone (or a WebRTC
client) originates a call. The call is originated by user 1010@mydomain.org. When
the first signaling of the originating call reaches FreeSWITCH, then the mod_sofia
module (responsible for SIP) or mod_verto (responsible for... Verto!) will need to
check the user authorization to make that call. The module will ask: in the users'
directory, what is the SIP password corresponding to user 1010@mydomain.org?
This question will be made each time via an internal FreeSWITCH API that will go
and get the requested value from the indicated section of the XML configuration tree
(in this case, the users' directory). There are many ways this task of fetching the XML
configuration snippet can be accomplished: querying a database, via HTTP, through
scripting languages, and so on. All of those methods return the requested XML
snippet. The one used by the demo configuration out of the box is reading an XML
main file from the filesystem, and then all the XML files included by it. This is done
once at FreeSWITCH startup. So, each time you change one of those XML files, you
must tell FreeSWITCH to refresh the XML tree it has built in its memory at startup.
The command reloadxml is usually enough. The XML snippet fetching is executed each
time information is requested by FreeSWITCH, but the fetching will be executed
against the tree built in memory at startup, so it needs to rebuild it if you edit any
XML file. Other methods such querying databases or HTTP servers are completely
dynamic, they directly query the database or the web server each and every time.

Regular Expressions
Regular expressions (regexes) are almost omnipresent in FreeSWITCH
configuration. They are "formulas" used to describe a string of text. For example,
with a regular expression (regex) you can denotes all of: "cats", "cat", "supercat",
"cAt" and "anycAts". That regex would be: .̂*c[aA]t.?$.. Explanation: caret (" "̂)
means the beginning of the string. Then the point means "whatever character". The
asterisk denotes an indefinite quantity (zero or more) of the preceding character - in
this case of the "whatever character". The character "c" denotes... the character "c".
Then the square brackets (and their content) denote a character that can be one of the
list enumerated inside the square brackets (so, in this case the character can be
"small a" or "capital a"). Then the character "t" is a placeholder for... the character
"t". Then the point for "whatever character".

Then the question mark that establish the quantity of the preceding character in "zero
or one instances", in our case means that after "t" can be one optional (eg, one or zero
instances) of "whatever character". The dollar sign means the end of the string.
Obviously you can have simpler regexes: "cat.*" would describes both "cat", "cats",
"catharsis", etc.

Also, you can select one or more substrings from a string, by applying a regex to that
string. Suppose you have the string "francesca bella ballerina" (eg: francesca, space,
bella, space, ballerina), you can apply the regex "([a-z]*) ([a-z]*) ([a-z]*)" to that
string. That regex (if successful) will split the string into three tokens, each one
composed by small characters a to z. Eg, you have split using the space character as
token delimiter, and you retained the sequences of a-z characters. Those sequences
(that is, the tokens you split from the original string) are automatically put inside the
$1, $2, $3 placeholders. So, you can use those placeholders and another regex to
build a different string: "$1 $3 molto $2". That would results in the new string:
"francesca ballerina molto bella", and she's actually a very beautiful dancer.

This micro intro gives you an idea of how powerful regexes can be for FreeSWITCH
configuration. You can describe patterns of extensions, DIDs, users, callers, callees,
gateways, etc. You can select, slice, dice and mix them. Logic can be built if that
regex matches (eg, if it describes the string) or if that other regex is unsuccessful (it
does not match the string). We'll see much more about all this.

Call Legs
Call legs are what we people in the Real Time Communication field live and die for.
It is a concept that can be confusing at first, but will become a second nature as time
goes and you continue to work with FreeSWITCH.

Let's start with an example: we are in an office, and we have a PBX. Francesca
wants to phone Giovanni. She dial Giovanni's extension. A call is established
between Francesca's phone and the PBX, Francesca will hear the ringback (or a
message if Giovanni is away). This call, from Francesca to the PBX, is known as
"A" leg in telco jargon. Then, the PBX knows from its configuration that it must
connect this A leg to Giovanni's phone, so Francesca and Giovanni can talk. PBX
will originate a new call, known in lingo as "B" leg, from itself to Giovanni's phone.
If Giovanni answers his ringing phone, PBX will join ("bridge" in telco lingo) the A
leg with the B leg, and let the media (audio, video, whatever) flow back and forth
from Francesca to Giovanni.

So: from the point of view of FreeSWITCH "A leg" is the original, initial, inbound,
incoming call. "B leg" is the derivative, PBX originated, outbound call. From the
point of view of the end user (Francesca), her call is successful (that is, she talks
with Giovanni), if PBX successfully bridges A leg and B leg, after B leg has been
answered by Giovanni. They can talk, eventually!

Let's suppose Giovanni is not there, and Francesca gets connected to the voicemail
system (so, she is still only in touch with the office PBX): this is a "call" that is
composed only by an "A leg", there is only one set, the inbound Francesca<=>PBX,
of media streams.

There are cases where there are more than two legs, for example if Francesca calls
Giovanni, and then she invites a third person to join, in a three-way call. In this case
the lingo goes: from Francesca to the PBX, is the "A leg". All others legs that are
originated because of Francesca call, in this case both the call leg from PBX to
Giovanni and the call leg from PBX to the third person, all those are B legs (that is,
there is no concept of a "C leg", "D leg", etc. They are all "B" legs).

IVRs, Interactive Voice Response
(Systems)
IVRs are those voice (and soon video) menu systems we're so used to when we try to
reach the customer care of our cellphone carrier, like "For knowing our latest offers,
please press 1, for listening to the Xmas greetings from our CEO, please press 2, to
speak with our technical department please press 3, to be transferred to our
administrative department for billing and invoices, please press 4. To replay this
menu, please press 5". OK, IVRs can be obnoxious, but are also useful.

A call to an IVR is at least initially a one leg call, but after a way can become a two
or three legs, if you are transferred to an operator, that maybe after a while invite a
sales representative to the call.

IVRs "interactivity" with the caller is almost universally based on the caller to press
digits on the dialpad. There is also a growing use of ASR (Automatic Speech
Recognition) systems, that are able to understand what the caller says. This
recognition is usually made in a limited knowledge domain, for example, after asking
"from what State are you calling from?", an ASR enabled IVR can be able to
understand the caller saying the name of the State. In the future will probably be
released ASR providing good reliability in "free form" conversation, but technology'
is not yet there.

In any case, the IVR logic is implemented as a tree, where from the initial root the
caller is able to navigate the branches back and forth by choosing (through the
dialpad or by voice) an option between those that are presented to him.

Extensions, Contexts and Profiles
This is another source of great confusion. If you are new to FreeSWITCH, forget
about the meaning you used to associate to the word "extension". In FreeSWITCH
"extension" is an immaterial concept. It can be understood as "a group of instructions
into a context". OK, this leave us with the problem of what a context is. A context is a
named collection of extensions. So, in a way, we have a circular definition here, in
which contexts and extensions define each others.

Bear with me and in a couple of paragraph we'll be over all this.

FreeSWITCH has "profiles". A profile is a collection of configurations that is related
to a specific IP address and port couple. For example 192.168.1.12:5060 is a profile,
192.168.1.13:5060 is another profile, 192.168.1.12:5061 is a third profile. Each one
profile can contains configurations that are completely different from that of other
profiles. One very important such configuration contained in a profile is to which
context the incoming call will go. A call is always incoming to a profile, eg, to an
address:port couple. So, let's say the address:port couple is the enter gate to a
specific profile. Once the call has entered the profile, first thing FreeSWITCH do is
to look up in that profile the configuration that defines which context the call must go
into.

Let's say the call is incoming at 192.168.1.12:5060. We called this profile
"myprofile", and in the XML configuration of that profile is defined that the context to
be used is "mycontext". This means that the incoming call will only be processed by
the extensions (instructions sets) contained in the "mycontext" extensions collection
(context). That is, the incoming call will go in the context defined in the profile, and
it has no way to access anything that is outside that context.

Context is the jail of the call. This has obvious security, logical, and practical
advantages: for example the calls that are incoming to a profile that is accessible by
our coworkers from the internal LAN will be directed to a context that gives the
feature of internal office calls, and allows also for reaching the PSTN, because we
want our coworkers to be authorized to place national and international calls. On the
other hand, the calls that are incoming to a profiles with a public Internet address,
that is the calls that are reaching us passing through the router from the outside of our
internal LAN, those calls are directed to a context that only allows for the call to be
connected to one of our coworkers' phone. This specific profile will have only the
feature to allow for external incoming calls to reach an internal phone, without any
possibility to originate PSTN calls. That is, strangers cannot use our paid gateway to
reach the PSTN.

So, different address:port couple, different profile, different context. It is actually so
simple!

Now is time to see what are those "extensions". We know from above each extension
is a set of instructions. When a call is incoming into a context (a context is a
collection of extensions) the most important thing in each extension is: do this
extension apply to the incoming call? Or, from the point of view of the call: do I enter
this extension? Do this extension apply to me?

Each extension has one property, the "condition", that defines if that extension applies
or not to the call. Eg, if the call will enter that extension, and pass through the steps
defined by the instructions contained into the extension. An extension can be viewed
as an instructions container, and the call must satisfy the extension "condition" to
enter it and pass through the instructions inside it.

So, extension==list of instructions. To enter an extension, a call must satisfy a
"condition".

And a "condition", what is a condition? A condition is a regular expression (regex) to
be applied to one attribute of the call. If that regular expression matches (eg if it
successfully describes the attribute of the call) the call will enter the extension and
will execute the instructions.

Let's see an example. A call is incoming on the 192.168.1.12:5060, "myprofile". In
"myprofile" XML configuration is defined "mycontext" context. In "mycontext" are
specified many extensions, each one of them with its own "condition".

The first one of those extensions has a very simple condition: regex "^1010$" to be
checked upon the "destination_number". So, this regex will be successful, it will
matches, if the "destination_number" attribute of the call is the exact string "1010"
(caret means string beginning, dollar sign means string end. So, "1010" is exactly
what must be between begin and end of the string).

If the incoming call was meant to be directed to the destination number 1010, then the
call will enter this extension and execute the instructions therein.

Those instructions are called "actions" in FreeSWITCH lingo, and can be whatever.
For example: create a variable and assign a value to it. Read another variable, apply
a regex to it so it convert to all capitals, create another variable and assign that value
to it. Answer the incoming call, eg go off hook. Play a prerecorded message to the
caller. Originate another, new, outbound call, and then join it (eg: bridge it) with the
incoming call, so caller from incoming call and callee from outbound call can talk to

each other. Hangup the call. Query a database. Access a web server. Read or write a
file. etc etc.
The actions (that are always contained inside an extension, "loose" actions do not
exist) can truly do anything.

All the rest, profiles, contexts, extensions, conditions, regular expressions, are neat
ways to have your actions pretty well organized, and to build logics and flows of
executions.
Also, a call can matches many extensions (eg, can satisfy the condition of more than
one extension) and in many cases will be allowed to enter many or all of the matched
extensions, and to execute the actions contained by each one of those extensions.
We'll see much more about that.

Variables
Variables in FreeSWITCH are associated to almost anything. You can think at
variables as attributes of something. For example, before we defined the
"destination_number" as an attribute of an incoming ("A leg") call, and we used it as
a string to which we applied the "condition" (regex) of an extension, to decide if that
extension's actions will be executed by the call, or if the extension (and its actions)
has to be skipped because its condition "do not matches" the string contained by the
variable "destination_number". "Variables" is the official name for all those call or
session attributes.

For example, an incoming call has a big number of associated variables, referred to
as "channel variables", or "call leg variables", or simply "variables". Those channel
variables spans from "destination number" (we saw this one) to "caller source
network", from "which audio codec is in use" to "at what time the call has been
received", from "what kind of user agent (eg, phone model) is calling" to "what SIP
headers were part of the incoming INVITE network packet". And not only those let's
say "natural", "descriptive", "objective" variables. We can also create and assign all
kind of arbitrary variables, and associate them to our call. For example the call has
been originated by the "sales group". Or the call is directed to the "support group".
Or, the cost per minute of the call is 5 cents. Or, the max allowed duration for this
call is 600 seconds. etc etc

All of the variables (both "original" and "assigned") can be checked by regular
expressions in an extension's condition. So, we can have a logic that if it is a working
day, during working hours, and the call is destined to the sales group, then made
John's, Rehan's and Giovanni's phone ring, and connect the call to the first one that
answers.

Caller profile Variables
Some variables we always find in a call (we also say those variables are part of the
"caller profile"):

username
dialplan
caller_id_name
caller_id_number
callee_id_name
callee_id_number
network_addr
ani
aniii
rdnis
destination_number
source
uuid
context

Some of the variables' names in the caller profile may be obscure to you right now,
but you'll find plenty of information later in this book, and in all the online
documentation (we developers too we check the online docs, we do not memorize all
and every variables, they're hundreds ;)).

What's specific about the caller profile variables' is that you use them in the "field"
of a "condition" by their plain names, without special syntax.
Why we specify that? Because variables in FreeSWITCH are indicated with the
special syntaxes ${varname} or $${othervarname} (we'll see later the difference
between the two syntaxes).
So, as a bonus for your fingers, you can save some typing and have a more pleasant
and readable dialplan when you use caller profile variables in the condition's field:

<extension name="Local_Extension_Skinny">

<condition field="destination_number" expression=" (̂11[01][0-9])$">

<action application="bridge" data="skinny/internal/${destination_number}"/>

</condition>

</extension>

As you can see we wrote "destination_number" in the condition's field, while we had
to type it entirely as "${destination_number}" when used elsewhere (here, in an
action executed if the condition is matched).

All caller profile variables are read only (that is, you cannot change them) and are
assigned automatically at the beginning of the call. They describe the call itself.

"Normal" Variables
Most FreeSWITCH variables are indicated by the syntax ${varname}. Variables can
be created, assigned and re-assigned. Actually, assigning a value to a variable
creates it, if it does not already exists. If it exists, it reassign it to the new value.

<action application="set" data="mystring='Rehan Allahwala'"/>

<action application="set" data="mystring2=SuzanneBowen"/>

<action application="set" data="mystring2=${mystring}"/>

The application "set" assign variables. Here we see how it works in dialplan
"actions".
When we create or reassign a variable, we use its name (without the ${} syntax).
Inside the "data" argument of the "set" action, we use the equal sign (=) to separate
the variable name from its (new) value. The single quotes are used to enclose a value
when it contains spaces.

When we want to use the variable's value, we use the dollar syntax.
So, in previous example, we first assigned a value to the variable named "mystring"
(creating it if it does not exists). Then we assign a value to the "mystring2" variable.
In the last line we reassign "mystring2" variable, giving it the value contained into the
"mystring" variable. The value of ${mystring2} is now 'Rehan Allahwala'.

All variables can be used by all modules and parts of FreeSWITCH. What does it
means? That, for example, when a user that is member of the "sales" group originates
a call, you can set a variable on that call. You can then have one of the Call Detail
Record modules to track that variable, putting it in CDRs and allowing your company
to identify cost centers.

Variables can be created by us out of nothing, or they can be automatically created by
FreeSWITCH, from information inherent the calls, the environment, the time of day,
etc.

Some variables reflect values from the various configuration files. Most of the
variables from configuration files are "writable". For example, we can set a default
value for our Station Identifier (that is, assign our own company name) when sending
faxes, and then we can override it reassigning it to "ACME co" in dialplan when we
use our same FreeSWITCH server as send fax service for a customer.

"Preprocessor" Variables
Those are the variables indicated by the syntax $${varname}. In a way, those are not
actual variables, but they act as read-only ones. You assign them in one of the
FreeSWITCH configuration files (/usr/local/freeswitch/conf/vars.xml), and then they
are literally substituted at startup when encountered. This is exactly the same as the
#define construct in C preprocessor, or a "Find and Replace" command in a text
editor.

<X-PRE-PROCESS cmd="set" data="hold_music=local_stream://moh"/>

In this example, by editing the vars.xml configuration file you alter the value that will
be substituted in all configuration files (dialplan included) when "$${hold_music} "
is encountered. If you then write in dialplan:

<action application="set" data="mystring=$${hold_music}"/>

it would be exactly the same as if you wrote:

<action application="set" data="mystring=local_stream://moh"/>

Because this is actually a text search and replace procedure that is done once at
FreeSWITCH startup, if you change a preprocessor variable in vars.xml you MUST
restart FreeSWITCH in order to activate the changes (in this case reloading the
configuration without restarting FreeSWITCH is not enough).

FS_CLI and Console, Controlling
FreeSWITCH
There are so many ways to control FreeSWITCH in real time and make it to do what
you want. You can write applications, scripts, have FreeSWITCH interact with
databases and legacy systems... Whatever means you'll use to integrate your platform,
you'll find yourself coming back now and then to the FreeSWITCH Command LIne
(CLI). And a lot of FreeSWITCH admins use only CLI for their day to day tasks.

/usr/local/freeswitch/bin/freeswitch -u freeswitch -g freeswitch -c

If you start FreeSWITCH in foreground (eg, using the "-c " option), after a brief
pause all the startup messages are scrolled away, and you end up at the command of
the FreeSWITCH Console:

Much more often, let's say almost always if you're not debugging startup messages,
you start FreeSWITCH in a different way, so it goes into background as a proper
server (daemon), without a controlling terminal.

A production system is usually started like that:

 /usr/local/freeswitch/bin/freeswitch -u freeswitch -g freeswitch
 -nonat -ncwait

After some seconds, this command ends, we're told of the FreeSWITCH Process ID
and then... nothing happens. Yes, is OK, FreeSWITCH is running in background and
ready to accept and manage calls, and we can interact with it using the fs_cli utility,
mimicking the native FreeSWITCH console.

 /usr/local/freeswitch/bin/fs_cli

Using fs_cli on a system where FreeSWITCH has already started brings us
immediately in control:

Exiting from Console kills
FreeSWITCH
Most important difference between fs_cli and the actual FreeSWITCH console (eg,
when you start FreeSWITCH in foreground) is that the only way to exit from the
actual FreeSWITCH console is by shutting down FreeSWITCH. This is tricky,
because for almost all other aspects they (fs_cli and FreeSWITCH actual console)
look and behave in the same way. Problem is, if you exit fs_cli, FreeSWITCH
continues to run in background, accepting calls, etc. And you can always re-launch
fs_cli and reattach to it (like an ssh terminal to a remote server). BEWARE, if you
exit the actual FreeSWITCH console you are terminating FreeSWITCH itself, and
you will need to restart it.

Some useful CLI commands
You can use most of those commands both from the actual console and from fs_cli.
After each command, press ENTER key.

command meaning

... (three
consecutive
points)

exit fs_cli. If used from console it shutdown FreeSWITCH

ctrl-d exit fs_cli

fsctl shutdown shutdown FreeSWITCH

hupall hangup all calls

fsctl loglevel [0-
7] change which log messages are visualized

status tells some basic statistics

version which code base

show channels visualize all call legs one by one, individually

show calls visualize all call legs grouped by complete bridged calls
(A+B)

help strangely confusing and overwhelming until you know what it
is printing about. Try it yourself!

You will end up using often "fsctl loglevel" command, that allows you to choose the
"level" of FreeSWITCH logging. FreeSWITCH server is able to generate an
enormous amount of information on its own inner working, most of which is of no
interest during normal running. You will normally use a loglevel of 3: all messages
categorized as "ERROR" or even more important (eg, level 2, "CRITICAL") are
visualized. Many admins like to run their FreeSWITCHes at loglevel 4, visualizing
messages starting at level "WARNING". But when you want to understand the cause
of a problem, or report a bug, you pump up the loglevel to 7, "DEBUG" and then
copy and paste all that will scroll by in your terminal (or that gets written in logfile).

Log lines are by default colorized by loglevel, you will soon train your eyes to spot
the red (ERROR or more important) and purple (WARNING) messages from the less
disquieting blue (NOTIFY), green (INFO) and yellow (DEBUG) lines.

Configure SIP and make the first calls
in demo dialplan
We're almost ready for the real emotions, when something rings and blinks. Right
after installation FreeSWITCH gets a demo example configuration complete with a
lot of features. A very complex dialplan has been laid out for you to play with, and
feel the power of FreeSWITCH.

NB: That dialplan is just a demo, don't use it in production. Is overcomplex and
has too much features, you do not know it, and so is outside your control.

Demo example dialplan and configuration are just that: demo examples. When you
finish play with them, delete them and build something that's right for your use case.
If you are not able, ask someone else, a friend or a consultant, to do it for you. Any
other behavior would be stupid and dangerous from a legal and financial standpoint.
You have been warned! :)

Change demo example password
First thing to do with a new installation is to change the default password for the
demo users (users, passwords, and all other concepts will be clarified in Chapter
4,User Directory, SIP, and Verto and during the rest of this book). Edit the file
/usr/local/freeswitch/conf/vars.xml :

Change "1234" to something else. If you change it to something easy, or only
moderately difficult, you will be hacked in next 20 minutes. It probably does not
matter financially until you add a PSTN gateway they can use atYOUR EXPENSE,
but please consider the legal implications if someone uses your server to originate
another kind of traffic, maybe some terrorist SIP calls? Then, take your time
explaining it all to the FBI during the next 3 years. Don't rush, they've got time. So,
choose a random string of robust length. In doubt, install and use uuidgen, it makes
very good passwords. In Debian, from root command line:

 apt-get install uuid-runtime

Then you execute uuidgen:

 uuidgen
 a6333e94-0608-4abf-ba82-b0f0f13ef986

Is a good password, isn't it? Anyway, you don't have to remember it, you just cut and
paste it:

Then save the file, and restart FreeSWITCH (this is a preprocessor variable, you
MUST restart FS for the change to take effect).

From fs_cli, or console, type:

 fsctl shutdown

And then restart FreeSWITCH as you've done previously.

Configure Linphone on a Desktop
Linphone is a wonderful SIP application, completely cross platform (Windows,
OSX, Linux, Android, iOS), battle tested in millions of installations, open-source,
and mainly developed and commercially supported by the nice people at the French
company Belledonne.

Example demo users are named by the 20 consecutive numbers 1000-1019. That is,
1001, 1002...1019. Their collective password is the one we just edited in vars.xml:
a6333e94-0608-4abf-ba82-b0f0f13ef986. To configure a SIP account in our
Linphone we need the IP address of our FreeSWITCH server, in our case the address
is 192.168.1.111. Please note we will run both FreeSWITCH server and all the SIP
clients on the same local network, and we open all firewalls on all machines
involved. You'll learn later how to do more complex topologies.

Create a SIP account in Linphone (Menu -> Options -> Preferences -> Manage SIP
Accounts), user must be between 1000 and 1019, in our case we choose 1010 (note
you MUST write "sip:" before SIP identity and SIP Proxy Address):

This is a Windows example, on other platforms the configuration interface will be
more or less the same. As soon you click OK, another dialog will ask you for the
password. Be ready to cut and paste the password in the dialog, before it timeout. If
it does timeout, edit the SIP account again, save it, and you will be asked again for
the password.

If all has worked well, your Linphone will register to the FreeSWITCH server and
will be ready to make and receive calls.

Configure a SNOM SIP "real" phone
When a SNOM (or other SIP) phone boots, it displays its own IP address. Use a web
browser and configure a SIP account ("Identity" in SNOM parlance)

Then press "Apply", on the bottom.

Now, go to the "RTP" tab, and switch off RTP encryption (we'll look into encryption
later in the book). Press "Apply".

If all has worked well, the SNOM phone is now registered to the FreeSWITCH
server. Don't forget to "Save" permanently the whole SNOM configuration when
asked, or you'll have to begin again next time the phone boots.

Configure Linphone on Android
Create a new account by touching the menu, or the "Assistant". Fill in all the required
fields.

The "Proxy" field will be filled in automatically for you. Then, click on the
"Password" field, and insert the password (I put it in a file, transferred on the
smartphone, and then... copied and pasted).

Then click OK.

If all has worked well, the Android Linphone will register to the FreeSWITCH
server, and will be ready at your commands.

And now... Fun, fun, fun with the Demo
Dialplan
You'll find the example demo dialplan main file in
/usr/local/freeswitch/conf/dialplan/default.xml . It makes for interesting reading.
Obviously you'll not be able to understand most of the details if this is your first
exposure to FreeSWITCH, but comments and your "gut feeling" will make you to
figure out a lot of it.

9386, Funny Prompts
Open the dialplan main file with a text editor, and search for "9386".

You'll find it toward the end of the file. We see the "condition" is to exactly match the
"destination_number" with "9386", no prefixes, no trailing digits (caret is beginning
of string, dollar is end of string). If the destination_number (it is a variable in "caller
profile", so we can use it in condition's "field" without the ${} syntax) of the
incoming call matches 9386, FreeSWITCH will answer the call (eg, go off hook and
begin the media streams packet exchange), sleep for a second and half, then play to
the caller an entity called "phrase:funny_prompts" (we'll see later in the book that a
"phrase" is a named collection of sound files). After all the playing, if the caller has
not already closed the call, FreeSWITCH will hangup.

(Last line in the picture means that all files with an xml extension that are contained
in the subdirectory "default" will be read in and "added" to the main dialplan. This is
handy for organization, we'll see).

So, this is the first call to our freshly installed FreeSWITCH, let's call 9386 from one
of our registered phones, and listen to a series of funny prompts played to us one after
another.

1000...1019, Phone to Phone Local Call
The next natural step is calling from one of our phones to another. The "extension"
dealing with this kind of call between demo users is very complex, because it packs
a lot of features.

Open the example demo dialplan main file in
/usr/local/freeswitch/conf/dialplan/default.xml with an editor, and search for
"Local_Extension".

We'll not follow this extension actions step by step, it's too complex and advanced
for this part of the book. But look at the condition. The regex in the "expression" field
matches the "destination_number" value for 1000...1019, exactly the same series we
know are the demo users. So, if from a phone you call one of the other phones, the
incoming call leg (the A leg, the call you are originating from the phone) will reach
FreeSWITCH, go to the dialplan, matches this extension, and the machinery inside
this extension will check if the callee user phone is registered to FreeSWITCH, if it
is registered FreeSWITCH will originate a new call leg (the B leg) from itself to the
callee phone.

If the callee answers, FreeSWITCH will join (bridge) the two call legs and starts
moving the media streams data packets back and forth between caller and callee. If
the callee do not answers, or if its phone is not even registered, FreeSWITCH will
connect the incoming call (the A leg) to the callee voicemail (so it will not originate
a second leg, the voicemail is a FreeSWITCH module, no external entities are
involved).

Now you know the plot, you can test the various scenarios, call the other phone,
answer, don't answer, call a wrong number, call a non registered phone, call one of

the standard users (1000...1019) for which you have not configured a phone. Have
fun, already!

5000, Calling the Demo Example IVR
IVR, Interactive Voice Response, self attendant, personal attendant, voice menu,
voice tree, is one of the things this bizarre society of last decades has made all of us
extremely familiar with. From call centres to voice mail systems, from the wakeup
call of our youth (our fathers' youth?) to airport information systems, we're used to
interact with a (synthetic?) voice through the digits we press on the dialpad.

So, call 5000 from one of the phones and interact with a simple but complete IVR,
with many options, menus and submenus. Some of the choices you can make from the
demo IVR are also extensions in their own right.

For example, if you press "3" on the dialpad under the hood you'll be transferred to
the "9664" extension, listening to music on hold. If you press "2", you'll be
transferred to the "9196" extension, that will echo your voice back to you (useful to
establish how much network delay for the back and forth voice trip).

We'll see more on how to build an IVR, and how the demo IVR has been built, later
in the book. For the time being, let's play with it.

3000, Conference Call
If you call 3000 from different phones, they all will be connected to the same
"conference room". There is no limit to the number of callers that can connect to the
same conference rooms, and you can have any number of different conference rooms
going on concurrently. Callers in the same conference rooms will be able to ear each
others, but will not ears callers in different rooms. Also, conference rooms have a lot
of features, moderators, optional pin authorization, etc. In the basic room we made up
for the demo, you can play with your dialpad and see what's happen. More on
conferences later in this book.

Example Dialplan quick reference
Consult the following table for a list of extension numbers and their functions:

Extension Function

1000 - 1019 Local extensions

** + extension number Intercepts a ringing phone (that is, call pickup)

2000 Samples call group: Sales

2001 Samples call group: Support

2002 Samples call group: Billing

3000 - 3399 Samples conference rooms

4000 or *98 Retrieves voicemail

5000 Demo IVR

5900 FIFO queue park

5901 FIFO queue retrieve

6000 Valet park/retrieval, manual

6001-6099 Valet park/retrieval, automatic

7243 RTP multicast page

0911 Group intercom example #1

0912 Group intercom example #2

0913 Emergency outbound conference example

9178 Example fax receive

9179 Example fax transmit

9180 Ring test, far end generates ring tone

9181 Ring test, send U.K.ring tone

9182 Ring test, send music as ring tone

9183 Answer, then send U.K ring tone

9184 Answer, then send music as ring tone

9191 ClueCon registration

9192 Information dump

9195 Delayed echo test

9196 Echo test

9197 Milliwatt tone (test signal quality)

9198 Tetris

9664 Music on hold

Summary
In this chapter, we were introduced to the default configuration of FreeSWITCH.
Among the topics we discussed were the following:

The important concepts behind how FreeSWITCH behaves when you make
calls, and why
Basic use of fs_cli, the FreeSWITCH command-line interface utility
How to configure SIP devices to connect to FreeSWITCH using the predefined
user accounts
Testing the default dialplan by dialing a number of different extensions

We now turn our attention to another important aspect of
FreeSWITCH: the user directory.

In the next chapter, we will take a closer look at the FreeSWITCH user directory.

User Directory, SIP, and Verto
SIP and Verto in FreeSWITCH both use the same User Directory machinery and
concepts. FreeSWITCH's User Directory (or, in FreeSWITCH parlance, simply the
"directory") is the central registry for all data related to users' authentication and
authorization.
After a default installation, out of the box, you'll find that FreeSWITCH is already
provided with 20 users, with a default password, each one of them belonging to one
or more groups. FreeSWITCH is able to send calls to a specific user or to an entire
group. Also, in User Directory you can set variables linked to the user, or to the
group. Those variables are then used by FreeSWITCH both in managing incoming
calls and when originating calls. We'll see how those variables can be used to select
an outbound telephony provider (ITSP) gateway specific for a user or a users' group,
or for letting all phones belonging to the same group to ring concurrently for an
incoming call, for adding a special value to the Call Detail Record accounting log, of
for choosing to which dialplan context a call must be sent to.
We'll also see how to add users and groups to the User Directory.
In SIP, we can send calls to gateways (gateways are SIP servers that belongs to
ITSPs or to other in-house services), and then will be the gateway that will take care
of call routing and termination (connecting the call to the national or international
PSTN). We'll see how to set up a gateway in a way that automatically registers our
FreeSWITCH machine to the remote server, and send it authorization credentials
when originating outbound calls.

In this chapter we will cover the following topics:

User Directory concepts
Authentication, Authorization and Accounting (AAA) in FreeSWITCH
Exploring and Using the Example User Directory
Adding Users, by Modifying the User Directory and Dialplan
SIP gateways, DID numbers, Dialplan Contexts and ITSPs

User Directory concepts
The User Directory is a (possibly big and complex) XML document that is accessed
by FreeSWITCH and all of its modules whenever they need to know about users'
attributes. It is in the User Directory that the user's password, which groups (if any)
the user belongs to, various and arbitrary variables and parameters related to the user
or to the group, and so on are defined.

Each time the FreeSWITCH core or one of its modules needs such an information, it
will issue an internal request. That internal request will use one of many different
methods to end up with an XML snippet that defines the information requested. So,
that XML snippet can be the result of a query to a database or to a webserver, or it
can be built starting from the XML tree FreeSWITCH composed in its own memory
at startup based on the configuration XML documents found on the filesystem.

In this chapter we'll mostly look at the User Directory we find on the filesystem after
a default fresh install, in the example demo configuration. The same concepts will
apply also when the User Directory registry is accessed via database query or HTTP
request.

The User Directory, or more colloquially in FreeSWITCH parlance simply the
"directory", usually has this schema:

It contains one or more "domain", each "domain" contains "groups", each "groups"
contains one or more "group" items. Each "group" contains the "users" item, which
contains one or more "user" item. The "user" item contains the "params" item, which
contains one or more "param" items. Being XML the eXtendable Markup Language,
the schema can actually be more complex, we'll see it with "variables" and
"variable" items interspersed here and there, but you sure got the knack of it.

By the way, the only required XML items are "domain" and "user". So, the simplest

possible complete "directory" XML tree (or, quite possibly, the XML snippet
returned by mod_xml_curl) would be similar to the following:

AAA: Authentication, Authorization,
Accounting
"AAA" is an acronym that rings familiar to all old hands of telecommunication since
time immemorial. Particularly, is the base itself of businesses like PSTN carriers, but
also to Internet Providing since the early days of dialup modems.

Simply put, AAA is the whole operation of:

* Authentication - knowing an user is actually who he is declaring to be (eg: login
and password do match)

* Authorization - knowing what "rights" that user has (eg: he can call national and
international numbers, excluded premium and for-pay numbers)

* Accounting - knowing what the user has just done and his history (eg: he started
with a credit of 835 units, and the call just finished is rated 35 units)

As you can see from this souped-up definition (google around for better ones), AAA
is a pretty abstract requirement, one that can be implemented in many different ways,
for many different aims, business logics and technologies. And it is different from
billing, even if it is providing the billing operation with its basic accounting data, and
is itself influenced by billing (if you don't pay your bills you will probably end up
being no longer authorized to use services).

In the old days, and still used by many ISPs, RADIUS was the main protocol and
server for centralization of AAA. FreeSWITCH supports RADIUS and can be
integrated in such legacy environments.

In the example demo configuration from a fresh install, FreeSWITCH handles AAA
in a static way, tailored for a company's internal PBX:

* Authentication is checked against user id and password in the User Directory

* Authorization is checked in dialplan against variables

* Accounting data is provided in the form of Comma Separated Values (CSV) rows
(directly processable by spreadsheets and databases) and/or XML entities (richer in
data dimensions, for further elaboration)

Exploring and Using the Demo
Example User Directory
After a fresh install, out of the box, you'll find the "directory" main XML file located
at /usr/local/freeswitch/conf/directory/default.xml . That main file will then include
many other files, as we'll see.

Let's understand its most important lines.

Domains and groups
First things first, we set the "domain" we're talking about. In SIP and in Verto,
addresses are in the form "userid@domain", very much like in email (actually SIP
borrowed this format from SMTP, the mail protocol, and Verto borrowed it from
SIP).
We can have multiple "domain" items, they would be added after the closing
</domain> XML tag (not in the screenshot).

Then, a "params" XML container starts, surrounding the "param" items that belongs
directly to the "domain" we're defining. Those "param" items will be linked to both
the "users" that are contained into this domain, and the "group" items (then, the "user"
items that belong to the "group" items) contained into the "groups" container of this
domain.

The "param" named "dial-string" is of param-ount importance (am I good with
words, huh?). It defines the way the user will be reached, both the protocol(s) (sip
and verto, in this case) to be used, and the specific addresses to send the call(s) to.
Don't bother to understand the details right now. As you can see, it sets both a sip and
a verto address, actually using internal APIs to know whether the user is registered in
those protocols, and if it is registered, at which addresses.

Then there is another param, to allow the verto protocol to interact with procedure
calls, for conference management and such.

Then, we have a container of "variables" that will be created or set for users in this
domain. Here we set many useful defaults, to be overridden both in dialplan and/or in
the user or group definitions.

Then the "groups" container, and its "group" items. One of those "group" items is
named "default", and inside it we can find a "users" container that includes all the
XML files in the default/ subdirectory (relative to the User Directory location, eg:
/usr/local/freeswitch/conf/directory/default/*.xml). Those XML files would
reasonably contain XML snippets defining "user" items. We'll see that later.

We then can see other "group" items, each of them with a "users" item that actually
contains some "user" items. But in this case those "user" items are not defining user's
data and variables, instead they just indicate to look into the rest of the domain's
XML definition for a user with a particular "id". This is useful to assign users to
more than a group. Eg: they all belong to group "default", but some of them belong to
the "sales" group too, while other belong both to "default" and to "billing" groups.

Users
Now, let's look at a true "user" item definition (eg, not to a "pointer"). Go inside
/usr/local/freeswitch/conf/directory/default/ and open the file 1000.xml:

At the beginning, inside the very same "user" tag, is declared the "id" of the user (this
is the same "id" that will be looked upon by the "pointer" kind of "user" item we saw
in previous section). The id is specific to a "domain", eg: you can have a
FreeSWITCH server that serves multiple domains, let's say, "domainA" and
"domainB".

In both of them can exist one user whose "id" is "1000". Each one of those two
"1000" is a completely different user, not related in any way to the other one. So,
those two users will probably have different passwords, can make and/or receive
calls both of them at the same time, etc. They are completely different users, they just
happen to have the same "id". They can coexist on the same FreeSWITCH server
because they belong to different domains. So, they would be "1000@domainA" and
"1000@domainB". See? Different! When there is more than one domain in a
FreeSWITCH platform, telco lingo sez: "is multi-tenant".

Inside the "user" container item, in this example we find both a "params" and a
"variables" container item.

Inside the "params" container there are "param" items that define the parameters that
belongs exclusively to this user. Possibly those "param" items override the ones set
in the "domain" container, or in the "group" container. For example, you can repeat
here the "jsonrpc-allowed-methods" param we found before in the domain definition,
so this particular user will have its value explicitly set for him (perhaps to "", empty
string, so no methods are allowed) instead of inheriting the one defined in domain

(that was the string "verto").

Other ones you most probably want to modify are "password", obviously, so to set a
specific password for this user (instead of inheriting the default one set into vars.xml
file), and "vm-password".
And there are cases where it can be convenient to override the "dial-string" param
item.

Exactly the same happens for the "variables" container, with "variable" items. Here,
you may want to override "default_gateway", so to use a specific SIP gateway for
this user. And very often you want to personalize some of the "*id_name" and
"*id_number" variable items.

Also, you may want to set your own variables. There are some already set in the
demo example user definitions 1000.xml...1019.xml. All of them can then be
referenced in dialplan and scripts, for example you want to check what kind of call a
user is allowed to originate, and you choose to test the content of the variable
${toll_allow} for this purpose. Remember, all those variables are available both to
core FreeSWITCH and to all modules. So, the modules generating CDRs will be
able to reference them, you can have the content of the ${callgroup} reported into
your Call Detail Records (for accounting purposes):

The following table lists each variable and what it is used for:

Variable Purpose

toll_allow Specifies which types of calls the user can make

accountcode Arbitrary value that shows up in CDR data

user_context The dialplan context that is used when this person makes a
call

effective_caller_id_name Caller ID name displayed on called party's phone when
calling another registered user

effective_caller_id_number Caller ID number displayed on called party's phone when
calling another registered user

outbound_caller_id_name Caller ID name sent to provider on outbound calls

outbound_caller_id_number Caller ID number sent to provider on outbound calls

callgroup Arbitrary value that can be used in dialplan or CDR

Adding a user to the demo example
directory and dialplan
Users are defined in User Directory. Where a call must go (eg, where it is routed to)
is defined in dialplan. In dialplan, there are regular expressions (regexes) that check
variables for string patterns. The most checked on variable is "destination_number",
whose value is the number the caller dialed.

So, if we add a user in the "directory", we must then be sure the dialplan allows for
calls to reach that newly added user. This often, but not always, means that we must
modify the dialplan too. We'll see about this later in this section.

Adding a new user to the directory
The demo example configuration file layout is organized to make it easy to add and
remove users. We saw that in the /usr/local/freeswitch/conf/directory/default.xml
file, inside the predefined default domain, in group "default", there is an instruction to
the FreeSWITCH configuration pre-processor to read in all of the XML files
contained in the /usr/local/freeswitch/conf/directory/default/ directory. Those files
contain the users' definitions.

We found the files 1000.xml ... 1019.xml, the 20 demo predefined users with "id"
1000 to 1019. There you can find also some other XML files, very well commented,
that can be source of inspiration.

In our demo configuration case, adding a user is done simply by copying 1000.xml to,
let's say, 1020.xml, and then editing the newly created XML file.

In your text editor, search and replace all string occurrences of "1000" to be "1020":

That's it. We just created, by adding this file in that directory, a new user with all the
same attributes of the user with "id" 1000. That is, same "callgroup", same
"toll_allow", and so on. We only changed its "id", its voice mail password, its
"accountcode" and "effective_caller_id_name" all of them to be the "1020" string.
From FreeSWITCH command line (fs_cli), we need to reload configuration for the
new user to become known to FreeSWITCH:

 reloadxml

Modifying the dialplan for the new user
We still have a problem: we saw in the previous chapter how the "Local_Extension"
in dialplan define how to route calls whenever "destination_number" (eg, what the
caller dialed in hope to reach the callee) is matching the regular expression
" (̂10[01][0-9])$". This regex matches 1000...1019, and then send the call to the user
with an "id" corresponding to the dialed number.

We must do one of two things: we can modify that already existing
"Local_Extensions" so its condition matches 1020 too, or we can create a new
extension in dialplan.

We can create a new extension in dialplan by copying all the "Local_Extension"
XML snippet (from the opening "extension" tag to the closing "/extension" tag, both
included). We may modify the new extension name attribute, but that's not required.
What is required is to change the "condition" on "destination_number" expression.
We can change it to be: "^1020$", and it will match exactly and only a
destination_number string variable equal to "1020" (caret is beginning of string
placeholder, dollar sign is end of string placeholder).

Or, we can edit the already existing "Local_Extensions" so its "destination_number"
condition matches 1020 too. There is more than one way to do this (as always with
anything PERL related, and FreeSWITCH regexes are of the PERL flavor).
The original regex is " (̂10[01][0-9])$", matching 1000...1019.
We can modify it to be " (̂10[01][0-9]|1020)$", and it will match 21 dialed numbers:
1000...1019 and 1020.
Or, we can make it " (̂10[012][0-9])$", and it will match 30 dialed numbers:
1000...1029.

Again, from FreeSWITCH command line (fs_cli), we need to reload configuration
for the modified dialplan to become known to FreeSWITCH:

Call to a Group
In section "Users and Groups" we saw how FreeSWITCH users can belong to
"groups" in the User Directory. Also, we saw how in demo example configuration
there is one group "default" to which all users belong to, and many other groups that
gather only some users. Btw, this is just a demo example, it does not need to be this
way, eg: group "default" could be non-existant, or gather only one user.

User groups are useful not only for assigning variables and parameters: a group could
be used as "callee" to originate (bridge) multiple calls.

In demo configuration groups are defined into
/usr/local/freeswitch/conf/directory/default.xml XML file.

Let's edit it, add a new group, and test a call to it.

Toward the end of the file, before the closing </groups> tag, insert a new "group"
container and the "user pointer" items you want to reference:

In our case we just copied and pasted the "support" group, and edited both the group
name and the contained "user" items.Save the file, and issue a "reloadxml" from
FreeSWITCH command line.

Now, let's add a group call extension to the dialplan: edit the XML file
/usr/local/freeswitch/conf/dialplan/default.xml

Locate the extension "group_dial_billing", and copy and paste it immediately after its
</extension> closing tag:

In our case we edited the extension's name, the destination_number "expression", and
the "data" passed as arguments to the "bridge" action.

The regular expression to be matched by "destination_number" value is now
"^2003$" (caret indicates beginning of string, dollar sign indicates end of string), so
the incoming call will match if the caller has dialed exactly "2003".

Then, in the "bridge" action data, we use the construct "group/groupname" and the
${domain_name} variable, to originate concurrent calls (parallel calls) to all
members of the "tommaso_stella_fan_club". By the way, Tommaso Stella is a famous
Italian sailor.

We can have groups with same name in different domains (eg, many domains in a
multitenant installation may have a group named "sales"), so we reference the
domain_name variable, which contains the domain the incoming call has been
identified as being routed to.

Please note that group members (that are, the "user" items) will be reached using
their "dial_string", defined as global, domain, group, or item parameter. So, for
example, a user can be reachable via a SIP call, another via a Verto call, a third via a
TDM call, and a fourth via three parallel calls by all means necessary.

After issuing another "reloadxml" from FreeSWITCH command line, we can then
call "2003" extension, and have all of Tommaso Stella fandom reached by parallel
calls. All phones and browsers will begin ringing, and as soon as someone answers,
ringing on the other phones will stop.

Voicemail
One of the finest features of the example demo configuration is the ready made
voicemail system, brought to you by mod_voicemail. The last four actions in
"Local_Extension" in demo dialplan are as follows:

 <action application="bridge" data="user/${dialed_extension}@${domain_name}"/>
 <action application="answer"/>
 <action application="sleep" data="1000"/>
 <action application="bridge" data="loopback/app=voicemail:default ${domain_name} ${dialed_extension}"/>

This means: try to connect the incoming call to the callee (that is, to the
dialed_extension, that was derived from destination_number), if you fail to connect it
(eg, the phone(s) at dialed_extension is/are not answered before the 30 second
timeout), then answer the incoming call (eg, go off hook), wait for 1 second doing
nothing, then connect that incoming call to the voicemail application (using the
loopback "fake" endpoint).

After an incoming call gets connected to the voicemail application, and the caller left
a message, FreeSWITCH is smart enough to light up (or blink) the MWI (Message
Wait Indicator) on the callee phone(s). Wooot, that kind of magic gives a lot of
satisfaction to us telco geeks. (Also, when the voice message has been heard or
deleted by callee, FreeSWITCH will have those MWIs to shut. Yay!):

Let's see an example using Jitsi, a fine free and open source softphone. If the callee,
when she's back at the softphone, clicks on the red icon with the number 4 (eg, the
MWI says: "you have 4 messages waiting"), she will see some details about the
voicemail, eg only 3 of the 4 messages are new:

Then, when she try to hear the message, she hit a bug in Jitsi (version 2.10.5550 for
Linux). Do to that bug, when she clicks the blue handset icon, she actually call back
herself (that is, she call back the account the messages where left for).

So, if she actually want to hear the messages, she have to call *98 (or 4000) from the
dialpad. She will be asked for her voicemail password. In default demo
configuration, voicemail password is the same as the extension number. So, in this
case is 1011. She will then have the whole panoply of a super featured voicemail
system. And after all messages will be listened to, MWI icon will disappear. But
let's see only some of the available options when she call *98 or 4000 to check her
own voice mailbox:

Main menu:
1-Listen to new messages
2-Listen to saved messages
5-Options menu (record name, record greetings, manage greetings, and so on)
#-Exit voicemail
While listening to a message:
1-Replay message from the beginning
2-Save message
4-Rewind
6-Fast-forward
After listening to a message:
0-Replay message from the beginning
2-Save message
4-Send to e-mail (requires configuration)
5 - Return the call
7-Delete message
8 - Forward the voicemail message

All those menus, and much more, are completely configurable by editing the XML
file /usr/local/freeswitch/conf/autoload_configs/voicemail.conf.xml.

Also if you don't want to change it, give it a look. You'll discover much more options
than described here. Also, don't forget to check our online documentation at http://freesw
itch.org/confluence for more configuration, for setting up voicemail to mail (that is, voice
message delivered to your mailbox as a mail attachment), and many more interesting
features.

Communicate with the World via SIP
Gateways and DIDs
Yeah yeah, all nice and dandy, but... really you want all this beautiful communication
platform to only be useful for calls between internal registered users?

Let's see how to add a SIP gateway to an Internet Telephony Service Provider
(ITSP), the easiest way to expand our communication platform to have a global
reach.
An ITSP provides its customers with SIP "trunks", eg: capabilities to connect
outbound calls to the world phone network. Also, an ITSP can provide DIDs (Direct
Inward Dialing) numbers: telephone numbers that when called originate an inbound
SIP call to our communication platform. So: SIP trunks are for us to send out calls to
the world. DIDs are for gathering calls from the world to us.

SIP Gateway from Us to the ITSP to
the World
FreeSWITCH simplifies SIP for us, with the concept of "gateway".
That "gateway" in FreeSWITCH lingo is just a glorified automation provided to us,
so we can use a simplified syntax meaning: "check whether this particular Internet
Telephony Service Provider (ITSP) is up and reachable, send this call out to it, give
the ITSP the login and password to authorize our call if needed, and wait for the ITSP
to connect our call to the wide world".

All of those mechanisms and actions are performed transparently to us, and the
monitoring of the ITSP availability is performed routinely even when we don't use it,
so if ITSP is down we don't even try it, but we'll be able to use it when it is back.

By the way, what happens under the hood is that FreeSWITCH uses the SIP concept
of "proxy" to ask our ITSP to route our outbound call. The ITSP then use some
method opaque to us to terminate, eg to connect to final destination, our call. That
termination method can be a direct link ITSP has with the final or intermediate
carrier, or maybe ITSP has hardware to interface to PSTN, such as Sangoma cards
and Patton boxes, or even our ITSP is then rerouting our traffic to another upstream
ITSP. We don't know.

Each ITSP has slightly different methods for accepting our requests for them to route
our outbound calls. It is important that ITSPs take security seriously. We must TAKE
SECURITY in connecting to our telephony provider VERY SERIOUSLY: it MAY
COST US THOUSANDS OF DOLLARS IN FRAUD. It is as easy as: someone
else, maybe a rogue ITSP, route its outbound calls (its "traffic") using our account at
our telephony provider. We end up paying the bill, that can be dramatically high.

So, before setting up our first gateway, let me repeat this: we must take security and
fraud prevention very seriously.
Telephony fraud is a huge industry, an incredible number of frauds are continually
perpetrated, and someone is definitely going to pay for that traffic. Keep our
password complex and unguessable, ask our ITSP for the traffic to be allowed only
from our IP address, ask for whitelisting destination countries (that is, traffic will
only be accepted if directed to countries we authorized, such as USA, Europe, and
Asia, but not to Oceania and satellite phones), block for pay numbers (for example,
188 and similar). If possible at all, use SIPS via TLS and SSL certificates to be sure
only traffic actually generated by us will be accepted and acted upon by our ITSP.

Let's assume we've done our due diligence and secured ourselves against fraud at the
best of our possibilities.

Edit the /usr/local/freeswitch/conf/sip_profiles/external/example.xml XML file, and
add a "gateway" container before the ending </include> tag. We can search
FreeSWITCH documentation at http://freeswitch.org/confluence looking for an example
configuration of a gateway to our ITSP, or we can look into our ITSP website, send
ITSP's support a mail, or ask in FreeSWITCH mailing list. Anyway, usually is very
easy, and boils down to a user/password couple, and to specify whether registration
is needed or not.

In our example we'll use Telnyx, a sponsor of 2017 ClueCon conference (eg, our
conference, each year in August in beautiful Chicago). First of all we create a
"connection" username/password using the Telnyx website. Our newly created
"connection" has "freeswitchuser" as username and "huikyfruywedgweicguwy" as
password. Then, we edit the
/usr/local/freeswitch/conf/sip_profiles/external/example.xml XML file, and add a
new "gateway" container before the ending </include> tag:

That's it. We can restart FreeSWITCH, or issue "reload mod_sofia" from command
line, and FreeSWITCH will register itself to the Telnyx SIP proxy, and we'll be ready
to send calls to the outside world.

We can check how our new gateway is going by issuing "sofia status gateway telnyx"
from FreeSWITCH command line.

In our case, we see we've been successful in registration ("State" line is "REGED",
eg registered), that this gateway is up since 61 seconds, we'll register again in 1 hour,
and so on:

http://freeswitch.org/confluence

Now, let's edit the /usr/local/freeswitch/conf/dialplan/default.xml dialplan XML file,
so we will be able to send calls through Telnyx gateway.

At the beginning of the file, we add a new extension that will route our calls through
Telnyx to the USA PSTN:

Here, look the regular expression cleverness: "destination_number" must begin with
9, then 1, then ten digits, and no more. Of the whole "destination_number" string, we
use parenthesis to select starting from the 1 after the 9, up and included the following
ten digits (eg, we "discard" the initial 9 from selection).
We will find our selection in the next line, inside the "data" arguments passed to the
"bridge" action": will be substituted to the "$1" placeholder (representing what was
selected by the first couple of parenthesis. If there was a second parenthesis couple,
we would be able to refer to what this second couple had selected using the "$2"
placeholder).

After issuing a "reloadxml" from FreeSWITCH command line, we can dial
918005551212 from one of our registered phones, and have a call to 18005551212
(9 is discarded by dialplan) sent to USA via Telnyx.

SIP DID from World to the ITSP to Us
A DID (Direct Inward Calling) number is a phone number that in some way when it
is called then originates a SIP call toward a SIP server (the SIP server, in our case
FreeSWITCH, will then route the call to its final destination, often an extension
phone).

The logical flow is: CALLER -> PSTN -> DID -> ITSP -> SIP -> FreeSWITCH

There are many DIDs providers, maybe the most known pure DID provider is
DIDx.net, that can provide local numbers from all around the world. Many ITSPs
also can lease you numbers, local to the country they are located and international
numbers, and usually they get those numbers from upstream DID providers.

So, we buy (actually, lease, nobody can sell you the ownership of a phone number,
you can only pay for its use month by month) a local number from our ITSP, in this
case Telnyx. We choose a number in Chicago, USA.
Telnyx is smart enough to use the data from our FreeSWITCH gateway registration
(eg our IP address and port) to send us the calls coming from the number we
"purchased".

In our case we purchased the DID number "+1-872-203-0716".

We need to add an extension to the incoming "public" dialplan ("public" is the
dialplan context where we receive inbound calls from the outside world), so we will
be able to connect the incoming call Telnyx send us from our DID number to one of
our registered phones .

Edit /usr/local/freeswitch/conf/dialplan/public.xml , and at file beginning add the
"telnyx_did" extension, which will transfer the incoming call to the 1012 extension in
default dialplan (which will be actually served by the "Local_Extension", as we saw
before, that provides a lot of features, voicemail included).

After issuing a "reloadxml" from FreeSWITCH command line, we can use our
cellphone to call "+1-872-203-0716" and the call will be routed to our softphone

registered as "1012" user. It will start to ring, and if we do not answers, call will go
to voicemail to record a voice message.

SIP and Verto Profiles, Dialplan
Contexts, ITSPs
In previous section we edited the "public" context of dialplan for servicing incoming
calls from DID numbers. And, in the section before it, we added an ITSP gateway to
the "external" SIP profile definition, and added an extension to the "default" dialplan
context, so we can use the gateway to call outside world.

Actually, in example demo configuration we have two SIP profiles, named "internal"
and "external" (those are just names, you can change them). And we have two major
dialplan contexts, named "default" and "public" (there is also another, "features", but
is not relevant here).

Seems a little confusing at first, but it makes perfect sense. Read on.

SIP Profiles
A SIP profile is just a couple address/port to which FreeSWITCH is listening.

Let's say our server has IP address 194.20.24.11.
The "internal" SIP profile in example configuration will have FreeSWITCH listen to
port 5060. So, the "internal" SIP profile is listening at 194.20.24.11:5060. This is the
address/port to which we will make our internal phones to connect, register,
authenticate, and send calls to.
Also, in the "internal" SIP profile definition, there is a "param" item, which name is
"context" and value is "public". Calls arriving at this address/port will be routed to
the "public" context in dialplan.

The "external" SIP profile in demo configuration will be listening at
194.20.24.11:5080. This is the address/port to which we will ask our ITSP to
connect and send calls to us (ITSPs do not register themselves, usually they just send
calls to us). So, if you need to set this explicitly in your ITSP account, remember to
set the "external" SIP profile port, that is 5080 in demo configuration.
Also, in the "external" SIP profile definition, there is a "param" item, which name is
"context" and value is "public". Calls arriving at this address/port will be routed to
the "public" context in dialplan.

Ouch! What's wrong? Both SIP profiles use the "public" dialplan context, but we saw
before that internal users and calls are serviced by the "default" dialplan context.
We'll see about this in a moment.

Dialplan Contexts
The "public" dialplan context contains extensions that can be safely reached by calls
that are incoming from the wild external world and by non authenticated users. Those
extensions do not give access to costly services (eg, outbound calls) or to exploitable
features.

The "public" context is the one servicing inbound calls from DID numbers, sent to us
by ITSPs. Also, this same "public" context is servicing whatever call comes from
non-authenticated users.

It has very few features and extensions, just enough to connect an inbound call to one
of our registered internal phones, or to services like voicemail and IVRs.
And it usually provides those features and services by "transferring" in an absolute
and final way the call to an extension in the "default" dialplan context. We saw before
how we set the call incoming from DID number to be "trasferred" to the "1012"
extension in the "default" context of the "XML" dialplan (dialplan is always "XML"
in example demo configuration). No way to go around, "transfer" is going to an
absolute extension.

The "default" dialplan is where in example configuration most of the action is, and is
servicing authenticated internal users. When a phone connects to the "internal" SIP
profile and register itself, it is challenged to provide username and password. Those
are checked against the User Directory. If the user is authenticated, it is then
associated to all variables and parameters contained in its User Directory user
definition, and in the groups and the domain it belongs to.

Amid those variables and parameters associated to an authenticated user in demo
example configuration, we find the variable "user_context". That variable is set to
"default". THAT'S IT!!!

So, an internal phone registers itself as a user, has its credentials checked against the
User Directory, is successfully authenticated. If that user has a variable
"user_context" defined in the User Directory, then all calls originated by that user
(phone) will be routed by that defined dialplan context (overriding the context set in
SIP profile).

Verto Profiles and Dialplan Contexts
Verto, in demo example configuration, always ask for authentication to phones (eg,
browsers) that are registering. So, it behave like the "internal" SIP profile: the
"user_context" variable associated to the authenticated user will be the dialplan
context that will route the calls originated by that user (browser).

So, an incoming call from a DID number, sent by our ITSP to our FreeSWITCH
server via SIP, can then be routed to the authenticated user registered via its browser
as a Verto WebRTC client. Also, a call made by an authenticated Verto user
connected via WebRTC browser will be routed by "default" dialplan context, and so
it will be able to send outbound calls via the SIP gateway to the external world. This
is the simplest possible way to implement a fully featured SIP/WebRTC bidirectional
gateway.

ITSPs
Our Internet Telephony Service Provider (ITSP) will send the calls incoming from
DID numbers to us on our "external" SIP profile (port 5080 in demo configuration) .
We will send to the ITSP outbound calls in need of a SIP routing to the external
world, using the "external" SIP profile. In dialplan we will use a SIP "gateway"
syntax that refers to the authentication needed by our ITSP to accept our outbound
traffic.

Summary
In this chapter, we discussed the following:

How AAA (Authentication, Authorization, Accounting) concepts are
implemented in FreeSWITCH
How FreeSWITCH collects users into a directory
How FreeSWITCH uses information fro User Directory and Dialplan to route
calls from users to each other, and to the world
Employing various user features such as voicemail
Adding a new user and modifying the Dialplan accordingly
Connecting to the outside world with gateways
SIP and Verto profiles

In this chapter, we made modifications to the default XML Dialplan, and we learned
how to set up users and domains within the XML user directory. Also, we saw how
to setup SIP gateways and DID numbers to interconnect with the external world. In
the next chapter we'll have a first look at WebRTC and Verto, powerful technologies
that promise to seamlessly integrate browsers, mobile apps and the Internet of Things
(IoT) into our FreeSWITCH communication platform.

WebRTC, SIP, and Verto
WebRTC, Real Time Communication in video and audio, is already working on more
than a billion browsers. Soon mobile apps will multiply. And WebRTC is poised to
be the multimedia communication layer adopted by the Internet of Things (IoT).

FreeSWITCH is a complete WebRTC solution, enabling preexisting and legacy
applications to serve users via new channels. Also, FreeSWITCH being an uber-
programmable application server, is the bedrock on which you can create the killer
service that define a new concept of "get rich quick"!

WebRTC is a group of technologies and standards for peer-to-peer multimedia
streaming. WebRTC needs an additional layer of signling and session management for
actually be useful: user directory, user locations, failure management, etc etc

FreeSWITCH supports both SIP on WebRTC (the session signaling protocol that runs
the telecommunication world) and VERTO, an open source new protocol designed to
be easy for JavaScript developers.

We'll see how to install, configure and manage your FreeSWITCH server as an
integrated WebRTC platform, we'll have a look at Verto Communicator (VC) the
amazingly advanced and easy browser client for videoconferencing and telepresence.

Then we'll go through the development of the same application, WebRTC Rooms, in
two indistinguishable flavors: one based on SIP.js and the other on verto.js.

In this chapter we will cover the following topics:

WebRTC concepts
Encryption in WebRTC
WebRTC in FreeSWITCH
SIP and Verto protocols rationale
Installing and configuring a complete FreeSWITCH WebRTC platform
Verto Communicator's amazing features
How to write a test application in Verto and SIP.js

WebRTC concepts
WebRTC is a bundle of standards and technologies that enable peer-to-peer audio,
video and data acquisition, streaming and exchange. Its first "killer app" is video
calls and videoconferencing. Its first implementation is in web browsers (more than
one billions WebRTC compatible browsers out there), its technology is already in
use by many of smartphones' apps, and is predicated to be the base for Internet of
Things (IoT) multimedia communication (will be many billions IoT devices WebRTC
enabled).

In the most straightforward and popular implementation, the browser will access a
website and load a page that contains Javascript. That script functions use WebRTC
APIs (see below) to interact with the local computer multimedia hardware
(microphone and camera) and to stream audio and video to/from peers.

The emphasis here is on peer-to-peer.WebRTC does not prescribes or support
anything that goes beyond grabbing, sending, receiving, and playing streams. No
signaling, no user directory or location services, no protocol to negotiate a
communication session establishment and tear down, etc.

WebRTC is NOT a protocol, nor a service. Using only WebRTC technologies you
must hardcode addresses in your application, on both the peers, and hope to find them
listening, and the application will only work for those peers.

For anything but the simplest demo WebRTC needs some form of signaling and
session management protocols. For your WebRTC service you can adopt a ready
made protocol, or invent your own.

The most established signaling session management protocol is obviously SIP, which
runs the entire world telecommunication network, from PSTN carriers to mobile
operators to PBXs and calling services. Another signaling protocol in wide usage is
XMPP, mostly for the management of instant messaging and presence services.
There are plenty of proprietary closed protocols, most notably the one behind

Skype.
And there are open source alternatives geared toward Web Developers and
JavaScript programmers such as FreeSWITCH's Verto. You will have to choose
one, or write your own.

WebRTC technologies are embodied in three groups of Application Programming
Interfaces (APIs) software developers use to build applications: GetUserMedia
(GUM), RTCPeerConnection (RTCPC or PC), and RTCDataChannels (RTCDC or
DC).

* GetUserMedia is about enumerating multimedia hardware on the local machine,
asking user permission to control the microphone and camera, getting their streams,
and playing streams through local screen and speakers

* RTCPeerConnection is about moving those audio and video streams between
defined peers

* RTCDataChannels is about moving arbitrary data (even structured data) between
defined peers

WebRTC RTCPeerConnection can (and must) use ICE, STUN and TURN to pass
through firewalls and NATs, and eventually reach its peer.

ICE is a technique that has been popularized by WebRTC itself, and is gaining
enormous traction. It is the real silver bullet for all networking problems, and works
kind of perfect, being the distilled wisdom of many years of engineering VoIP
services.

ICE will use a STUN server to tell the application what is its public address as seen

from the Internet (eg, from outside NAT and firewall), and will use a TURN server
as in-the-middle relay in the case peer-to-peer communication is not possible or
fails.

So, a functional WebRTC application will need to:

* Use GetUserMedia API to control mic and camera

* Use a session protocol and possibly external auxiliary servers to locate the peer
and establish a session

* Use ICE (and STUN and TURN) to find the network path to the peer

* Use RTCPeerConnection to stream audio and video to/from the peer

Encryption Everywhere
Encryption of media and data streams is mandatory. Full stop. There is no way
you can have a WebRTC communication without encrypting the streams that are
exchanged. Those would be the media streams (audio+video) and, if present, the data
streams. Media streams are encrypted as SRTP with key exchange via DTLS. That is
done for you by the RTCPeerConnection API.

But, while you're at it, it makes only sense to have the session protocol's signaling
encrypted too. The transport of choice for such signaling is usually Secure
WebSocket. You will see almost everywhere the URI prefix WSS:// (WebSocket
Secure) when defining WebRTC signaling servers and endpoints. WSS signaling
exchange is encrypted by TLS (eg, like web HTTPS). The alternative, unencrypted,
is simply WS, but is rarely used beyond testing purposes.

WebRTC in FreeSWITCH
OK, enough with abstractions, let's see under our belated hood, how WebRTC is
implemented by FreeSWITCH.

FreeSWITCH is a complete WebRTC platform, and can act as both WebRTC
gateway and WebRTC Application Server. Eg, FreeSWITCH is able to connect
WebRTC clients to external "normal" SIP and PSTN services (or PBXes), enabling
already existing or legacy services to be accessed by one billion browsers.

At the same time (and this can be literally true: while acting as gateway for some
external services) FreeSWITCH is able to directly serve to WebRTC clients
(browsers and apps) the exact same audio/video applications is serving to "normal"
SIP and PSTN clients, such as PBX, IVR, Call Center, Conferencing System, Calling
Card, etc applications.

To FreeSWITCH, WebRTC is just another kind of communication channel, along
with SIP, TDM, MGCP, H323, Skype, Jingle, etc. All FreeSWITCH features are
available via WebRTC, natively.

WebRTC Signaling in FS: SIP and
Verto
As we've already seen in this chapter, WebRTC needs a session protocol to
complement its own streaming capabilities. That protocol will use signaling to find
the peer location, establish and tear down sessions, manage presence and messaging,
etc. FreeSWITCH supports two such protocols: SIP and Verto.

These two different protocols only affect how is written the client application (client
application is the web page and Javascript the browser load in order to access
FreeSWITCH) and how it "talks" to FreeSWITCH. Both protocols give full access to
FreeSWITCH features and services. Also, both signaling protocols can be used at the
same time by different clients accessing the same service, and even interacting with
each other (eg, we can have a videoconference in FreeSWITCH that's concurrently
accessed by one WebRTC client "speaking" SIP and another "talking" Verto, in
addition to other clients coming from TDM and "normal" (non-WebRTC) SIP:

Why SIP and why Verto?
Remember: this choice only impacts how you write the Javascript on the webpage
the browser loads to access FreeSWITCH server. We'll see later in this chapter we
can have the same exact application written for each one of protocols,
indistinguishable from the end user's point of view and experience.

SIP albeit complex will be intimately known to all programmers coming from a
telecom background, with its concepts of session, dialog, transaction, the familiar
REGISTER-INVITE-BYE methods, etc. It's the perfect choice to integrate WebRTC
clients in a complex environment, and enjoys 20 years of experience in scaling,
monitoring, deploying.

Verto is a completely different experience: is very simple and it uses programming
constructs already familiar to web programmers, such as JSON data structures. Also,
Verto optionally provides for interaction with FreeSWITCH internal server side
APIs and bidirectional synchronization of data structures.

For example, with Verto you can have a data structure in FreeSWITCH (let's say the
list of videoconference participants) that's synchronized on all Verto clients
transparently and in real time, so if a new participant comes in (even from PSTN) its
presence will be immediately visualized by all Verto clients' browsers, without any
need for any client side action (eg, no polling).
You can replicate this behavior in a SIP based JavaScript (a clever programmer can
do whatever she wants, are not them all just bytes?) using data streams, special
messaging, push techniques, and so on, but in Verto it's native and takes just a few
lines of code.

WebRTC Media Streaming in FS:
SRTP
Irrespectively of which session signaling protocol is used by WebRTC clients (SIP or
Verto), their media streams will always be encrypted as mandated by WebRTC
specs. That would be Secure RTP (SRTP), with encryption keys sent via DTLS.
Actually inside FreeSWITCH the same module and source code will be used to
encrypt and serve media streams to both kind of WebRTC clients.
As seen previously, WebRTC mandates how to stream and encrypt media, leaving the
session protocol to the whim of the application implementer.

Installing and Configuring WebRTC in
FS
For a quick test, Tristan Mahe contributed a script that installs all that's needed
forWebRTC, from FreeSWITCH itself to certificates to webserver, to Verto
Communicator, on a freshly deployed Debian 8 minimal Jessie server.
Install the base OS on hardware or on a virtual machine, ssh on that machine, execute
thescript and you're ready to connect to your new WebRTC Conference Server:

https://freeswitch.org/confluence/display/FREESWITCH/Debian+8+Jessie#Debian8Jessie-QuickStartFreeSWITC
HDemoWithVertoCommunicator
In following sections we will not use the automated install script. Instead we'll look
at all the steps needed to build a complete WebRTC FreeSWITCH platform starting
from a standard FS installation (eg, right after installing FreeSWITCH).

Actually there is no module to compile or install for adding WebRTC support on top
of the standard FreeSWITCH deployment. All modules are already installed and
ready to run. FreeSWITCH is WebRTC capable out of the box.

We'll need to edit several configuration files, so that FreeSWITCH finds the
mandatory SSL certificates, know which ports to listen at, and many other details.

https://freeswitch.org/confluence/display/FREESWITCH/Debian+8+Jessie#Debian8Jessie-QuickStartFreeSWITCHDemoWithVertoCommunicator

Certificates
This is one stumbling block for many FreeSWITCH/WebRTC newcomers. We'll need
many certificate-related files, and different combination of them, to help encrypt
different parts of FreeSWITCH traffic: "traditional" SIP on TLS (eg, "sips" as in
classic RFC 3261), SIP on WSS, Verto on WSS, and SRTP media.

We need certificate files for the HTTPS server too, it will be serving the webpages
and JavaScript loaded by browsers as our WebRTC clients.

We need the Certification Authority root and chain files.

And we'll need the private key too.

Also, original certificate files need to be concatenated in different ways to form the
different ready-to-use certs we'll need.

No wonder many find this confusing.

I use one easy solution: I put all the certificate-related files in one only directory, and
have both the different FreeSWITCH modules and the webserver (Apache or Nginx)
to fetch them from there.

I also have a script to concatenate them in the correct way. You can use it directly (if
your certificate comes from the same provider as mine), or easily modify it to suit the
files sent you by your certificate provider.

First of all: forget about self-signed certificates, and similar souped-up solutions.
Self-signed certificates "may" work for testing purposes, but is such a PITA to have
all the moving parts correctly coordinated, it is not worth at all, and a sure recipe for
a lot of time wasted and frustration. Simply put: DON'T. Use real, valid certificates
for real, valid domain names (eg, no IP addresses).

If you are going to have your server(s) to answer requests for one or a few domains,
you're lucky. Certificates can be obtained instantly and for free from letsencrypt.org.

If you want your server(s) to answer for all possible subdomains of a main domain
(eg www.mydomain.com, sip.mydomain.com, support.mydomain.com,
sip.mycustomername.mydomain.com, www.mysecondcustomername.mydomain.com,
etc) you need to buy a wildcard certificate. No free options exist at the moment for
wildcard certificates, but this may change in future.

In case of free (and perfectly valid) certificates made via www.letsencrypt.org (check
their website for instructions):

#!/bin/sh
cp /etc/letsencrypt/live/my.fqdn.com/* /usr/local/freeswitch/certs/
cd /usr/local/freeswitch/certs/
cat fullchain.pem privkey.pem > wss.pem
cat cert.pem privkey.pem > agent.pem
cat chain.pem > cafile.pem

In case of PositiveSSL wilcard certificates issued by Comodo (google around for
rock bottom prices), note you must find and download the addtrustexternalcaroot.crt
file:

#!/bin/sh
cd /usr/local/freeswitch/certs/
cp myserver.key privkey.pem
cp STAR_mydomain_com.crt cert.pem
cp STAR_mydomain_com.ca-bundle chain.pem
cat cert.pem chain.pem addtrustexternalcaroot.crt > fullchain.pem
cat cert.pem privkey.pem fullchain.pem > wss.pem
cat fullchain.pem privkey.pem > agent.pem
cat chain.pem > cafile.pem

http://www.letsencrypt.org/

Installing and Configuring Apache or
NginX for HTTPS serving
We need a webserver able to feed pages via TLS/SSL to our WebRTC browser
clients. Whatever webserver that's able to speak HTTPS will do. The two most
popular webserver at the moment are Apache and NginX. Let's look at how to install
them and enable HTTPS/SSL, on Debian 8 (Jessie).

We will then be ready to put the files we want to serve via HTTPS in the directory
/var/www/html/, both in Apache and NginX case.

You only need Apache or NginX, no need to install both of them.

Apache
The first step will be to update the package database, and install the apache2 and ca-
certificates packages. The latter package will install the Certification Authorities
certs, which may be useful when dealing with SSL.

Then we enable the SSL Apache module, and the default SSL site served via HTTPS.

In the following two lines (here broken over three lines each for easy reading) we
use PERL to substitute the filenames and path of SSL/TLS certificate and private key.

In final line we restart Apache.

apt-get update
apt-get install apache2 ca-certificates
a2enmod ssl
a2ensite default-ssl.conf
perl -i -pe \
's|/etc/ssl/certs/ssl-cert-snakeoil.pem|/usr/local/freeswitch/certs/cert.pem|g' \ /etc/apache2/sites-enabled/default-ssl.conf
perl -i -pe \
's|/etc/ssl/private/ssl-cert-snakeoil.key|/usr/local/freeswitch/certs/privkey.pem|g' \
/etc/apache2/sites-enabled/default-ssl.conf
service apache2 restart

NginX
Similar to the Apache installation, we update the package database, and install the
nginx and ca-certificates packages. The latter package will install the Certification
Authorities certs, which may be useful when dealing with SSL.

Then we enable listening to the 443 port (SSL), and include the snippet for the
default SSL site served via HTTPS.

In the following two lines (here broken over three lines each for easy reading) we
use PERL to substitute the filenames and path of SSL/TLS certificate and private key.

In last line we restart NginX.

apt-get update
apt-get install nginx ca-certificates
perl -i -pe 's/# listen/listen/g' /etc/nginx/sites-enabled/default
perl -i -pe \
's/# include snippets\/snakeoil.conf/include snippets\/snakeoil.conf/g' \
/etc/nginx/sites-enabled/default
perl -i -pe \
's|/etc/ssl/certs/ssl-cert-snakeoil.pem|/usr/local/freeswitch/certs/cert.pem|g' \
/etc/nginx/snippets/snakeoil.conf
perl -i -pe \
's|/etc/ssl/private/ssl-cert-snakeoil.key|/usr/local/freeswitch/certs/privkey.pem|g' \
/etc/nginx/snippets/snakeoil.conf
service nginx restart

Configuring VERTO
On a default FreeSWITCH installation you find the mod_verto configuration in
/usr/local/freeswitch/conf/autoload_configs/verto.conf.xml. We will edit the profile
"default-v4", for IPv4, eg, normal Internet connectivity. You want to check the TCP
port where VERTO will listen for signaling on WSS transport. Note that
secure="true"indicates WSS (as opposed to simple WS).

 <param name="bind-local" value="$${local_ip_v4}:8082" secure="true"/>
 <param name="ext-rtp-ip" value="93.58.44.181"/>
 <param name="debug" value="0"/>

The value of ext-rtp-ip sets the IP address VERTO will tell the WebRTC clients they
must connect to in order to exchange media streams. It must be set to FreeSWITCH IP
address as seen from the WebRTC clients. So for clients coming from the Internet,
ext-rtp-ip must be set to the external side of the NAT, eg to the routable IP address
(often same as the webserver IP address).

You may want at least temporarily bring the value of "debug" to 10, so all VERTO
exchanges will be visible (in red!) on the FreeSWITCH console and on fs_cli.
Bringing up mod_verto debug, together with the javascript console on the client
browser, will give you complete trace of what signaling is exchanged.

Configuring SIP on WebRTC (WSS)
On a default FreeSWITCH installation you only need to edit the "internal" SIP
profile, in /usr/local/freeswitch/conf/sip_profiles/internal.xml. You want to check
"wss-binding" for the TCP port where SIP (mod_sofia) will listen for signaling on
WSS transport.

 <param name="wss-binding" value=":7443"/>
 <param name="ext-rtp-ip" value="93.58.44.181"/>
 <param name="ext-sip-ip" value="93.58.44.181"/>

The values of ext-rtp-ip and ext-sip-ip sets the IP address SIP will tell the WebRTC
clients they must connect to in order to exchange signaling and media streams. It must
be set to FreeSWITCH IP address as seen from the WebRTC clients. So for clients
coming from the Internet, ext-rtp-ip must be set to the external side of the NAT, eg to
the routable IP address (often same as the webserver IP address).

Writing WebRTC Clients
A WebRTC client, in its most popular implementation, is an HTML webpage(s) that
loads a JavaScript(s). Together, HTML and JavaScript define the GUI and the
behavior of the WebRTC client.

Usually the JavaScript part, loaded by the HTML, leverages one or more JavaScript
libraries. Those libraries implement the signaling protocol of choice (in our case SIP
or VERTO) and its interaction with WebRTC APIs.
We have already seen how WebRTC APIs provide for accessing the local computer
multimedia hardware (microphone and camera), manage the peer-to-peer streaming
of audio and video with the peer, and a bidirectional data channel.

The session signaling protocol will leverage and complement those WebRTC P2P
capabilities, so they become useful for much more than a connection to a pre-known
address and port.

SIP and JavaScript
SIP for WebRTC has been notably implemented in theJsSIP JavaScript Open Source
library. JsSIP was written by José Luis Millán, Iñaki Baz Castillo, and Saúl Ibarra
Corretgé aka the Basque VoIP Mafia, also co-authors of RFC 7118 that defines the
use of WS and WSS for SIP:

JsSIP was then forked and further developed by Will Mitchell and its team, while
working at OnSIP. The result as been released as open source SIP.js library. SIP.js as
of today has widespread adoption, and is the most used Javascript WebRTC SIP
library in FreeSWITCH Community:

Another notable and independent (actually, the first SIP client for HTML5)
opensource SIP library implementation in JavaScript is sipml5, developed by
Doubango Telecom.

Each one of these libraries is readily available on the Internet, with full
documentation, example clients, etc. The most actively developed and supported
seems to be SIP.js. We'll look at SIP.js in action later in this chapter, implementing
the WebRTC Rooms application.

Verto and JavaScript
The VERTO protocol is a quintessential JSON protocol, and is available to
JavaScript programmers by including one of the following library "flavors".

First flavor is verto-min.js the already minified base library distributed together with
FreeSWITCH sources, a plain "raw" JavaScript library, depending on jquery and
jquery.json.
The other flavor is a "verto" plugin for JQuery, available through the "npm" Node
Package Manager.

The VERTO library has been written by Anthony Minessale II, the Lead Developer
and Primary Author of FreeSWITCH in parallel with mod_verto, during the
development of FreeSWITCH 1.5 (1.5 was the "master" git code leading to the
release of FreeSWITCH 1.6).

The Verto JQuery plugin and its documentation were further developed by Italo
Rossi and its team at Evolux.net.br (they're developers of Verto Communicator too,
see below), and contributed by open source wiz Chad Phillips (hunmonk on IRC).
You'll find complete Verto JQuery plugin documentation, and step by step
programming instruction with client examples at http://evoluxbr.github.io/verto-docs/.

We'll use the "raw" original verto-min.js library in our WebRTC Rooms
application, later, for the sake of simplicity.

http://evoluxbr.github.io/verto-docs/

Verto Communicator, an Advanced
WebRTC Client
Verto Communicator is a cool example of a complete advanced opensource WebRTC
VERTO client with additional features for Videoconferencing, written by Italo Rossi
and its team at Evolux.net.br.

If you configure in FreeSWITCH a videoconference with full optionals, like the one
answering at extension 3500 in default demo dialplan, Verto Communicator (or VC)
is able to use all of its features.

It has screen sharing, mute/unmute of audio and/or video, chat, member list with real
time indication of who's talking, automatic visualization of gravatar, fullscreen,
dialpad, choice of which microphone and camera, bandwidth, etc.

In picture you can see a VC screenshot made by Seven Du Jin Fang, FreeSWITCH
guru, writer of FS video code among many other things, and leader of the burgeoning
FreeSWITCH Chinese community. He's on floor, other participants begin to arrive
and are automatically positioned around him:

And when you connect to the conference with "moderator" rights (eg, "|moderator"
flag), it gives you a wealth of additional capabilities: you can kick participants, start

and stop audio/video recording, play audio/video files, take spapshot pictures, put a
banner on bottom of each participant video stream with an arbitrary text (eg, name
and position), choose which participant has the "floor" on the conference, etc. You
actually become the "movie director" of the conference, choosing live who's on
screen, how many people are on screen at the same time, you can make appear the
screen shared by a presenter as fullscreen, with a little picture in picture of the
presenter talking, etc. Picture made right now :).

To install Verto Communicator on your Debian 8 Jessie server, git clone
FreeSWITCH sources, and:

cd /usr/src
git config --global url."https://".insteadOf git://
git clone https://freeswitch.org/stash/scm/fs/freeswitch.git -bv1.6 freeswitch
cd /usr/src/freeswitch/html5/verto/verto_communicator/
./debian8-install.sh
ln -s /usr/src/freeswitch/html5/verto/verto_communicator/dist /var/www/html/vc

You then want to edit /var/www/html/vc/config.json as per your values (edit
password to be the same as in /usr/local/freeswitch/conf/vars.xml):

{
 "login": "1008",
 "password": "mydefaultpasswordfromvars.xml",
 "wsURL": "wss://lab.opentelecomsolutions.com:8082"
}

You can find a more complete example of config customization in
/usr/src/freeswitch/html5/verto/verto_communicator/src/config.json.sample, made by

our precious Ken Rice, FreeSWITCH Core Team developer.

VC is covered again in Chapter 13, Conferencing and WebRTC Video-Conferencing.

WebRTC Rooms, both SIP and Verto
Clients
Let's have a look at a simple project, that I hope you will be able to use for tests,
production, and as a base for further developments.
Btw, an earlier version of WebRTC Rooms (from "Mastering FreeSWITCH" 2016
Packt book) has been adapted by Len Graham as VERTO client plugin for the
excellent FusionPBX (www.fusionpbx.com : Mark Crane is the Lead Developer of
FusionPBX, a complete web interface for configuring and managing a FreeSWITCH
based PBX, industrial grade).

WebRTC Rooms is a basic web client able to make and receive videocalls, send
DTMFs during the calls, and interface with the chatting system of FreeSWITCH
conferences.
There are two versions of it, differentiated by which signaling session protocol is
implemented by the JavaScript part. One version uses SIP and the other uses VERTO.
The interesting bit is that both versions have the exact same HTML, user interface,
behavior, user experience, etc. Actually, they are indistinguishable if you don't fire up
the JavaScript console in the browser.

Here's a screenshot from the SIP.js flavor (you can see SIP messages in javascript
console), later you'll see the VERTO flavor:

http://www.fusionpbx.com/

Conference chat in WebRTC Rooms
Usually the conference chat feature is only available in VERTO WebRTC clients,
where is given almost for free by the capability of VERTO protocol to keep data
structures in sync and distribute events to all connected clients. Verto clients just
implements callbacks when a chat event is received.

SIP protocol does not include provisions for syncing of data structures or for events
distribution. SIP is a completely different world.

The SIP WebRTC Rooms client has been implemented to only exchange "traditional"
SIP SIMPLE messages, it does not use WebRTC or JavaScript techniques to get the
chat events, but only uses SIP techniques. Actually it uses the same SIP instant
messaging techniques as "traditional" SIP hard and soft phones (and we'll see with
WebRTC Rooms that the conference chat messages can be received and sent by
"traditional" SIP hard and soft phones too).

As a "bridge" to exchange the conference chat messages with the SIP conference
participants we'll use the internal FreeSWITCH CHAT API, and also mod_sms and
its chatplan.

Mod_sms, as we'll see later, is able to intercept and route (according to its chatplan)
all messages related to the internal CHAT API interface of FreeSWITCH. The
conference FreeSWITCH module (mod_conference) send out the chat messages to
conference participants using the internal FreeSWITCH CHAT API. Also, SIMPLE
SIP messages sent by SIP clients can be received by mod_sms and routed by its
chatplan (as incoming voice and video calls are managed by the FreeSWITCH
dialplan).

So, it was enough to register the SIP clients with the CHAT API of the conference so
they receive chat messages from the conference, and set a chatplan so mod_sms will
route the incoming SIMPLE SIP messages sent by SIP clients into the CHAT API of
the conference.

By the way, in principle this same mechanism is working also for conference
participants coming via mod_dingaling, mod_gsmopen and other modules that
implement the CHAT FreeSWITCH API.

FreeSWITCH Conferences
Conferences in FreeSWITCH have oh, so many features. In particular, in the demo
configuration there is one conference "profile" that's fully packed with all the
goodies. It's called "video-mcu-stereo", and is defined in
/usr/local/freeswitch/conf/autoload_configs/conference.conf.xml.

Conferences using the video-mcu-stereo profile are available at extensions 3500-
3599 of demo configuration, as "cdquality_conferences".

The most important characteristics are the ability to mix the video streams incoming
from participants, allow for screen sharing, apply video effects such as captions,
chroma keys, picture in picture, video playings, and so on. Also, it sports a complete
system for chatting and for displaying real time presence/status of participants.

We'll mainly use extension 3500 for testing, but if you're looking for something
more frugal and light on your server CPU, look for extensions 3000-3099
("nb_conferences" extensions, "default" conference profile).

mod_sms and chatplan
Chatplan is the dialplan for chats. Chatplan is the new black! First of all you must
edit /usr/local/freeswitch/conf/autoload_configs/modules.conf.xml and uncomment
mod_sms loading at FS startup, as follows:

 <load module="mod_sms"/>

Then you restart FreeSWITCH, or manually load mod_sms from fs_cli:

 load mod_sms

Now, we must edit the chatplan in /usr/local/freeswitch/conf/chatplan/default.xml :

<?xml version="1.0" encoding="utf-8"?>
<include>
 <context name="public">
 <extension name="demo">
 <condition field="to" expression="^(3\d{3})@.*$">
 <action application="info"/>
 <action application="set" data="to=${to_user}-${to_host}"/>
 <action application="set" data="dest_proto=conf"/>
 <action application="set" data="chat_proto=conf"/>
 <action application="set" data="skip_global_process=true"/>
 <action application="set" data="from=${from_user}"/>
 <action application="set" data="final_delivery=true"/>
 <action application="set" data="from_full=<sip:${from_user}@${from_host}>"/>
 <action application="info"/>
 <action application="send"/>
 <action application="stop"/>
 <action application="info"/>
 </condition>
 </extension>
 </context>
</include>

This chatplan will intercept the SIMPLE SIP instant messages sent to the conference
extension (regular expression beginning with "3", then three times a number, then "@"
something) and route them to the conference chat itself (the "to" field mimics the
internal FreeSWITCH routing of conference chat events).
We then shape the "from" fields, so they look better when displayed in conference
chat.

Before and after those transformations, we output to the FreeSWITCH console all the
message variables (same as the "info" application in dialplan): before and after the
treatment.
This chatplan will allow for a bridge between incoming SIP instant messages and
conference chat events.

Don't forget to reload the FreeSWITCH configuration from fs_cli:

 reloadxml

Dialplan "chat_proto" extension
Inside mod_conference (conference_event.c file) there is a mechanism that
broadcasts all chat messages in a conference to all conference participants (avoiding
double send).

Messages are sent to the "presence_id" of the participants clients, but only if that
client channel has a "chat_proto" variable set to a valid value (eg, mod_conference
needs to know which argument must be given to the CHAT FS API for that particular
"presence_id"). Many endpoint modules have their own chat protocol, you can use it
even from fs_cli:

freeswitch@lxc111> show api chat
name,description,syntax,ikey
chat,chat,<proto>|<from>|<to>|<message>|[<content-type>],mod_dptools

Anyway, the "chat_proto" variable needed by mod_conference to broadcast messages
is automatically set only if channel is coming from mod_verto. So? So, without that
chat_proto variable the conference participants coming from SIP does not get chat
messages sent to them. We need to redress this discrimination.

Let's edit the dialplan in /usr/local/freeswitch/conf/dialplan/default.xml , and insert
the following near the beginning of the file:

 <extension name="chat1" continue="true">
 <condition field="${source}" expression="^mod_sofia$">
 <action application="set" data="chat_proto=sip"/>
 </condition>
 </extension>

This extension will add the variable "chat_proto" with value "sip" to all call
incoming from mod_sofia, that is to all SIP calls, included the WebRTC calls on
WSS SIP transport.
Then, thanks to the "continue=true" parameter, the dialplan goes on,looking for other
extensions to evaluate.

HTML
Hah, now we're entering the inner sanctum of our applications. Actually the HTML
(index.html) is the same for both the SIP.js and the VERTO version. The only thing to
change is which JavaScript files to load.

The VERTO flavor is as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <!-- The above 3 meta tags *must* come first in the head; any other head content must come *after* these tags -->
 <meta name="description" content="A WebRTC client for Verto FreeSWITCH module">
 <meta name="author" content="Giovanni Maruzzelli">
 <link rel="icon" href="favicon.ico">
 <title>WebRTC Rooms</title>
 <!-- Bootstrap core CSS -->
 <link href="css/bootstrap.min.css" rel="stylesheet">
 <!-- Custom styles for this template -->
 <link href="high.css" rel="stylesheet">
</head>
<body>
 <div id="conference">
 <input type="hidden" id="passwd" value="mysecretpassword_LOL" />
 <input type="hidden" id="cidnumber" value="WebRTC" />
 <div class="form-signin">
 <h2 class="form-signin-heading">WebRTC Rooms</h2>
 <div id="content" class="form-signin-content">
 <input type=number id="login" min=1000 max=1019 step=1 class="form-control" placeholder="Login with a Number between 1000 and 1019" required autofocus>
 <button class="btn btn-lg btn-primary btn-success" data-inline="true" id="loginbtn">Login</button>
 <input id="ext" class="form-control" placeholder="Insert the Extension to Call or Wait to be Called" required autofocus>
 <button class="btn btn-lg btn-primary btn-success" data-inline="true" id="callbtn">Call</button>
 <button class="btn btn-lg btn-primary btn-danger" data-inline="true" id="backbtn">Back</button>
 </div>
 <div id="video1" align="center" class="embed-responsive embed-responsive-4by3">
 <video id="webcam" autoplay="autoplay" class="embed-responsive-item"> </video>
 </div>
 <button class="btn btn-lg btn-primary btn-danger" data-inline="true" id="hupbtn">Hangup</button>
 <br id="br" />
 <textarea id="chatwin" class="form-control" rows="5" readonly></textarea>
 <br id="br" />
 <input id="chatmsg" class="form-control" rows="1" placeholder="type here your chat msg" autofocus></input>
 <button class="btn btn-primary btn-success" data-inline="true" id="chatsend">Send Msg</button>
 </div>
 <div align="center" class="inner">
 <p>2017
Giovanni Maruzzelli - OpenTelecom.IT</p>
 </div>
 </div>
 <script type="text/javascript" src="js/jquery.min.js"></script>
 <script type="text/javascript" src="js/jquery.json-2.4.min.js"></script>
 <script type="text/javascript" src="js/verto-min.js"></script>
 <script type="text/javascript" src="js/md5.js"></script>
 <script type="text/javascript" src="high2.js"></script>
</body>
</html>

This file uses the bootstrap CSS framework, so it works perfectly on mobile and is
reactive to different display format and sizes. The first few lines serve just for this, to

setup the minimalist but quick GUI interface.

Then, in the HTML body, we have a lot of DIVs, BUTTONs, INPUTs, TEXTAREAs,
each of them with its own "id".

We will use that "id" value from Javascript, to refer to each single HTML element
when we want to show or hide the item (eg, the login button disappear after you
register to the server), or to read or write its input and output area (we want to read
what extension the user want to call, and we want to display chat messages in the
chat textarea).

We have the special "video" element, which bootstrap.css displays in a beautyful
way on any device. Its "id" will be referenced by both the VERTO and SIP.js
initialization scripts (eg, they need to know where to display the video stream).

The last few lines are the scripts to load.

We recognize verto-min.js from
/usr/src/freeswitch/html5/verto/video_demo/js/verto-min.js, one flavor of the
VERTO JavaScript library distributed in FreeSWITCH sources.
Our script, the one that interact with the HTML elements' "id" is named high2.js.

The final lines of index.html SIP.js version load different Javascript:

 <script type="text/javascript" src="js/jquery.min.js"></script>
 <script type="text/javascript" src="js/jquery.json-2.4.min.js"></script>
 <script type="text/javascript" src="js/sip.js"></script>
 <script type="text/javascript" src="js/md5.js"></script>
 <script type="text/javascript" src="highsipjs2.js"></script>
</body>
</html>

We recognize the sip.js library (linked to the latest release, available at http://sipjs.com/do
wnload/ , while our script is highsipjs2.js

Here's a screenshot of the VERTO flavor, with Verto objects in Javascript console

http://sipjs.com/download/

JavaScript
Both in VERTO and in SIP.js flavor, the WebRTC Rooms application script is very
similar.
Actually, VERTO flavor was the one written first, as a companion to the "Mastering
FreeSWITCH" Packt book published on occasion of ClueCon 2016. In that book you
can read an almost line by line discussion of it. This new version has some fixes and
added features (automatic answer to incoming calls, better management of DTMF
sending during a call, possibility to call non numeric extensions, and various polish).

$(window).load(function() {
 cur_call = null;
 chatting_with = false;
 $("#conference").show();
 $("#ext").hide();
 $("#backbtn").hide();
 $("#cidname").hide();
 $("#callbtn").hide();
 $("#hupbtn").hide();
 $("#chatwin").hide();
 $("#chatmsg").hide();
 $("#chatsend").hide();
 $("#webcam").hide();
 $("#video1").hide();
 $("#login").keyup(function(event) {
 if (event.keyCode == 13 && !event.shiftKey) {
 $("#loginbtn").trigger("click");
 }
 });
 $("#ext").keyup(function(event) {
 if (event.keyCode == 13 && !event.shiftKey) {
 $("#callbtn").trigger("click");
 }
 });
});

At startup both flavor execute the "load" function, that sets which HTML elements are
visible, and how to react when the user presses "Enter" while writing in the login or
extension input area.

When the user fill the login input and presses Enter or click on the login button, the
init() function is executed. Inside init() we create the main JavaScript object, our
own WebRTC User Agent client. Let's look at the SIP.js flavor, VERTO is very much
similar:

function init() {
 cur_call = null;
 chatting_with = false;

 var nameHost;
 var which_server;

 nameHost = window.location.hostname;

 which_server = "wss://" + nameHost + ":" + "3384";
 console.error("which_server=", which_server);

 ua = new SIP.UA({
 wsServers: which_server,
 uri: $("#login").val() + "@" + nameHost,
 password: $("#passwd").val(),
 userAgentString: 'SIP.js/0.7.7 Sara',
 traceSip: true,
 });

 $("#cidname").keyup(function(event) {
 if (event.keyCode == 13 && !event.shiftKey) {
 $("#callbtn").trigger("click");
 }
 });

 setupChat();

 $(document).keypress(function(event) {
 var key = String.fromCharCode(event.keyCode || event.charCode);
 var i = parseInt(key);
 var tag = event.target.tagName.toLowerCase();

 if (tag != 'input') {
 if (key === "#" || key === "*" || key === "0" || (i > 0 && i <= 9)) {
 cur_call.dtmf(key);
 }
 }
 });
}

We first made sure there are no calls and chat data structures left dangling, then
establish which server we're connecting to (useful in case of massive scaling with
domain based partitioning), then we use values we got from HTML to create our
main object, in this case "ua".

We prepare the input field for the callee extension to react at Enter press.

Then we call the setupChat() function, which is slightly different in each flavor. This
is because, in the VERTO flavor, we fill the "from" fields while in SIP.js those are
automatically setup by the main object. The following is VERTO:

function setupChat() {
 $("#chatwin").html("");

 $("#chatsend").click(function() {
 if (!cur_call && chatting_with) {
 return;
 }
 cur_call.message({
 to: chatting_with,
 body: $("#chatmsg").val(),
 from_msg_name: cur_call.params.caller_id_name,
 from_msg_number: cur_call.params.caller_id_number
 });
 $("#chatmsg").val("");
 });

 $("#chatmsg").keyup(function(event) {
 if (event.keyCode == 13 && !event.shiftKey) {
 $("#chatsend").trigger("click");
 }
 });

}

We then have the management of many buttons and situations: hangup, back, call, and
so on.

The "call" button execute the function docall(), again, very similar in both flavors:
you use the INVITE method in SIP.js (already!) and the newCall method on VERTO.
They get more or less similar arguments: in VERTO you have setup callbacks for
events when the main object is initialized, while in SIP.js you setup your callbacks
now.

Let's look at the VERTO flavor:

function docall() {
 if (cur_call) {
 return;
 }
 cur_call = verto.newCall({
 destination_number: $("#ext").val(),
 caller_id_name: $("#login").val(),
 caller_id_number: $("#login").val(),
 useVideo: true,
 useStereo: true,
 useCamera: 'any',
 useSpeak: 'any',
 useMic: 'any'
 });
}

The remaining parts of the scripts both setup their callbacks to react to incoming chat
messages, to hangups, and to the establishment of the session (eg, remote peer
answered).

Here's a screenshot of the FreeSWITCH console, showing chatplan info, SIP
SIMPLE message, and Verto message. Yesss!

Let's look at the different ways to react to an incoming call (both flavors answer
automatically for you).
SIP.js registered the function handleInvite as callback for when a call is incoming.
Here's the implementation:

function handleInvite(s) {

 cur_call = s;

 s.accept({
 media: {
 constraints: {
 audio: true,
 video: true
 },
 render: {
 remote: document.getElementById('webcam')
 }
 }
 });
 $("#ext").val(s.remoteIdentity.uri.toString());
 cur_call.on('accepted', onAccepted.bind(cur_call));
 cur_call.once('bye', onTerminated.bind(cur_call));
 cur_call.once('failed', onTerminated.bind(cur_call));
 cur_call.once('cancel', onTerminated.bind(cur_call));
 $("#chatwin").html("");
}

It accepts the call, gives its own constraints to the media negotiation, sets some
callback for call events (success, remote hangup, and so on), then sets the contents of
a couple of HTML fields.

The VERTO flavor script also registered callbacks to the incoming events and state
changes (similar to a GUI message pump programming style):

 onDialogState: function(d) {
 if (!cur_call) {
 cur_call = d;
 }
 switch (d.state) {
 case $.verto.enum.state.ringing:
 console.error("RINGING");

 $("#webcam").show();
 $("#video1").show();
 cur_call.answer({
 callee_id_name: "ciao",
 callee_id_number: "1234567",
 useVideo: true,
 useStereo: true,
 useCamera: true,
 useMic: true
 });
 break;

TODO
A lot! For example, implementing direct chat (in normal calls, outside conferences)
in VERTO.

In SIP.js, print in the chat textarea the message sent during "normal" calls (sending,
receiving, and displaying of the received message is already working).

Polishing and homogenize it all

Adding button, menus, and commands to manage conferences layouts, moderator
duties, screen sharing, and the like.

Have a more robust management of call failures, and a robust clean it up when things
go awry.

Summary
In this chapter, we discussed the following:

What is WebRTC and why it is very much relevant
Mandatory security in WebRTC
WebRTC implementation in FreeSWITCH
The role of signaling protocols (SIP and Verto) in WebRTC
Complete installation and configuration instruction for both FreeSWITCH and
supporting WebRTC components (certificates, web servers)
A super advanced and fully featured browser client for WebRTC
videoconferencing and telepresence: Verto Communicator
How to write a client web application using VERTO or SIP.js

In this chapter, we looked at both the theory and the nitty gritty details, and we
learned how to setup real world WebRTC services for our user base.

In the next chapter we'll have a first look at the XML dialplan, the call routing engine
at the core of FreeSWITCH. We'll look at how to implement the most diverse
services and leverage the wealth of examples in the demo default configuration

XML Dialplan
The XML Dialplan is at the heart of a FreeSWITCH installation. For many old hands
of telecommunication, coming from a different background, it can be confusing, and
almost intimidating. Truth is: is very simple and logical. You just need to look at it
with fresh eyes.

Let's dispel myths:

XML is not difficult at all, it reads exactly like a plain text configuration file
It does not need any kind of special editor: Notepad, Vim, Emacs, Nano,
anything, will do
It is not esoteric: it is text logically structured

In this chapter we will not even talk about XML in itself, because there is no need to.

Instead, we'll delve into the dialplan structure: depending on its characteristics, an
incoming call will land to a specific "context" in dialplan. Contexts are like
completely separated "jail" (in the BSD or chroot meaning of the word), they are the
"virtual machines", or the "sandboxes" of dialplan. You can go multitenant using
multiple contexts.

Each context contains extensions, where conditions are checked, and based on the
result of the check, actions are executed or not.

We'll look at the multiple flow controls in dialplan, the "continue" attribute of
extensions, and the "break" attribute of conditions.

We'll review what call "legs" are, and their funny terminology of A-leg and B-legs.

Then we'll look at how to interpret the demo configuration dialplan, and how to write
new extensions, and all the building blocs (applications, dialstrings, etc) for a basic
FreeSWITCH dialplan.

Forget all you know
Here's general dialplan concepts:

Dialplan decides what FreeSWITCH will do with/to an incoming (audio/video)
call
Dialplan is a list of unrelated patterns
Each individual pattern has its own individual list of actions
The call "enters" the dialplan from beginning, and proceeds toward dialplan
end
The call tries to "match" each pattern in turn, from first to last
If the call "matches" a pattern, then the list of actions of this pattern is added
to the call TODO list
At the end of dialplan traversal, the TODO list is executed
Matching (or non matching) an individual pattern can be cause for stopping
traversing the dialplan (that is, not try to match any successive pattern)
The name "EXTENSION", in FreeSWITCH parlance, designatesanindividual
PATTERN complete with its own set of ACTIONS
Examples of individual patterns: (call destination number is between 1000 and
1019 and time of call is between 10 and 11 in the morning), (call is incoming
from network 192.168.1.0/24), (call is not coming from network
192.168.1.0/24), (call is from a specific DID), (call is coming from a Firefox
Browser and is a WebRTC call and destination number begins with 852), (call
is coming from an internal SIP phone)
Examples of action lists: (answer, play a sound file to caller, hangup), (answer,
play a sound to caller, monitor which DTMFs the caller presses, react to those
DTMFs by doing a database query and playing different sounds based on query
results, hangup), (answer, monitor for fax tone, if tone is present then receive
fax, else transfer call to operator), (answer, join the call to a videoconference)

Contexts
Dialplan can have different sections, named contexts, which are completely
separated from each other. Because of this separation, contexts can be used to
implement a multitenant system (one only FreeSWITCH serving both companyA and
companyB, without worries about extensions overlapping).

Based on where the call come from (that is, which protocol, network interface, or
port) or based on an explicit "context attribute" of the user originating the call, the
incoming call is "sent" to a specific dialplan context. At the end of that context the
call exits the dialplan.

Contexts are so much separated one from each other that often people talks about
different dialplans, while actually they mean different contexts. Formally there is
only one dialplan, the XML one. For all practical purposes, you too can think of
different contexts as different dialplans. That's OK, we all do.

There are three contexts in the demo configuration you get out of the box after a
fresh FreeSWITCH installation (you can have as many you want):

default: calls originated by internal trusted users are sent to this
public: all other incoming calls are sent to this
features: no calls are sent to it, but the other two contexts "borrow" features
from it

Default context
The default context is the workhorse of the demo configuration: all calls from internal
phones are sent to "default" context. Is the most complex context of the demo
configuration, with an awful number of extensions.

Most of its extensions (see below for the exact meaning of the term "extension" in
FreeSWITCH) are not "final destinations" for the call, instead they simply attach
some variables to the call representation, based on the call matching or not matching
certain criteria (patterns). Some extensions lead to services (IVRs, voicemail,
conferences, etc). Only one of all the extensions in the default context is a bridge to
internal phones, that is, what traditionally has been designated with the word
"extension".

The XML dialplan's default context in demo configuration is in
/usr/local/freeswitch/conf/dialplan/default.xml file, and includes all XML files
inside the /usr/local/freeswitch/conf/dialplan/default/ directory.

Public context
In the demo configuration dialplan, "public" is the context to which all the calls
coming from "outside", or from unauthorized users, are sent. It is a very simple
context, containing just two extensions. Unauthorized users and calls coming from
outside are totally limited in what they can do or which services can reach (actually
zero).

The first extension print some debug info about the call on FreeSWITCH console,
while the second extension is a transfer to the "internal phones" extension in the
default context.

The XML dialplan's public context in demo configuration is in
/usr/local/freeswitch/conf/dialplan/public.xml file, and includes all XML files inside
the /usr/local/freeswitch/conf/dialplan/public/ directory.

DIDs are usually managed right there, by dialplan extensions with patterns that match
calls incoming from ITSP provided phone numbers, in XML files inside the
/usr/local/freeswitch/conf/dialplan/public/ directory.

Eg, in an XML file there we will define that a call coming from our ITSP with
number +1212555444 will be bridged to Sara's registered internal deskphone, while
+1212555445 will instead be connected to our IVR ("Hello, you reached
FreeSWITCH Solutions, your call is important to us", and so on).

Features
Calls are not sent directly to the "features" context of the demo configuration. Instead,
the extensions listed in features context are there to be "executed" by other contexts.

Let's say the features context is a repository for, uhm, features ready for consumption.

For example, extensions in demo features context are able to emulate "call transfer"
feature even in phone that does not have a "call transfer" button.

The XML dialplan's features context in demo configuration is in
/usr/local/freeswitch/conf/dialplan/features.xml file

Extensions
In FreeSWITCH parlance, an extension is NOT a phone or a service.
An extension is a configuration compound made of a pattern (criterion) and a list of
actions.

An incoming call traverses the dialplan one extensions after another. The call has
many characteristics (destination number, time of day, kind of transport, etc). At each
extension those characteristics (represented by "variables") are checked against the
pattern (the criterion). If the pattern "matches" the characteristics, the list of actions
will be added to the call's TODO list. At the end of dialplan traversal, all the actions
stacked into the TODO list will be executed, one after another.

An extension is contained between the XML tags <extension> and </extension>.
Extensions can have two attributes: name and continue.

Attribute "name" has no usage beyond being printed in debug output. Helps you to
follow through what happens. Forget about it, is just a name.

Attribute "continue" is of the utmost importance. It determines if the call, having
matched the pattern of this extension and stacked its actions into the TODO list, will
then continue to the next extension or will exit the dialplan now (and begin the
execution of the TODO actions list).

By default, a call exits the dialplan at the first extension match.

If you set <extension name="myextensionname" continue="true">, the call will check
if it matches the next extension ("and so on, and so on", as Zizek said).

Conditions (and "patterns")
Conditions are, broadly speaking, the building blocks for the "patterns" we talked
about before in this chapter.

Conditions are contained by "extension". Conditions contain "action". Conditions
have the following generic appearance:

<extension name="this_extension">
 <condition field="destination_number" expression=""^1234$">
 <!-- action -->
 <!-- action -->
 </condition>
</extension>

Inside a dialplan "context" (that is, it would be inside "default" or "public" context
in demo configuration) we have a opening "extension" tag, then conditions begin.
Between the opening and closing condition tag, we find actions.

In this case the condition will check if the "destination_number" call variable is
matched by the "expression" (regular expression, or regex) "^1234$". If the number
called was actually 1234, then the action(s) contained between this one condition
opening and closing tags will be added to the TODO list (at the end of dialplan
traversal all actions in the TODO list will be executed).

<extension name="that_extension">
 <condition field="ani" expression=""^5551212$"/>
 <condition field="destination_number" expression=""^1234$">
 <!-- action -->
 <!-- action -->
 </condition>
</extension>

In "that_extension" we actually have two conditions, one after the other (conditions
are "stacked"). The first one has no "action" between the opening and closing tags
(closing tag is implied by the trailing "/", in XML).

This means: first condition will check if the "ani" variable (eg, calling party phone
number) is 5551212. If that first condition was evaluated to "true", then the second
condition will be evaluated. If destination number is 1234, then this second
condition's actions will be added to call's TODO list.

Stacked conditions are in AND relation, they must both be true, for the second
condition's actions to be eventually executed. This because in a condition is implied
by default the "break='on-false'" attribute.

<extension name="other_extension">
 <condition field="ani" expression=""^5551212$" break="on-true"/>

 <condition field="destination_number" expression=""^1234$">
 <!-- action -->
 <!-- action -->
 </condition>
</extension>

In "other_extension", we see the "break" attribute at work. Here the condition breaks
the flow if the expression evaluate to true. So, in this case: if calling party number is
different from 5551212, then second condition will be evaluated.

Following are the possible values for the break (meaning: it breaks out from
checking further conditions - it breaks out of the extension) attribute:

on-false: this is default, if expression evaluate false, it will not check next
conditions
on-true: if expression evaluate to true, it will not check next conditions
never: will never break out, it will do check next conditions
always: will sure break out, will not check next conditions

Call legs (channels)
Each industry has its own parlance and magic words. In telecommunication,
whatever the underlying technology (SIP, WebRTC, TDM, etc), you will very often
read about call "legs" and "channels".

First confusing fact: each "call leg" is actually a call in its own right. That is: a call
is often said to be made by an "A-leg" and a "B-leg". In fact, "A-leg" and "B-leg" are
proper calls.

Second confusing fact: each leg is a channel. So, most of the "calls" are consisting of
two channels(A-leg and B-leg), while some (to IVRs, voicemail, and the like) are
consisting of one only channel (A-leg).

The reason for this funny terminology is the fact that when people talk about "a call",
they usually mean an end-to-end voice or video connection, from the caller to the
callee. Also, and maybe more importantly, calls were billed this way, as a complete
"circuit" established between caller and callee.

Such a complete "call" circuit, when you have a server in the middle (for example,
FreeSWITCH) is actually made by two completely separate and independent calls
(also known as channels): one from the caller to FreeSWITCH, and one from
FreeSWITCH to callee.

To better understand this, think at when you check your voicemail. The call "circuit"
is between you and the voicemail server. This is the "A-leg" of the call (and in this
case, there is no "B-leg").

From the server (that is, FreeSWITCH) point of view, the "A-leg" is the "incoming"
call, the call originated by the caller.

After an incoming call is received, depending on the dialplan, a second call leg (in
fact, another independent channel) will be originated by FreeSWITCH. Is also
possible that dialplan will originate many B-legs (for example, when you want one
person to be called in parallel to its cellphone, deskphone and home phone). This
newly originated call(s) is(are) the B-leg(s).

Consider a situation where an incoming call is arriving into FreeSWITCH. Inside
FreeSWITCH this is allocated as one channel. This is the A-leg. Let's say
destination_number of that call is 1010, it matches the "Local_Extension" extension
in demo configuration dialplan.

FreeSWITCH originates another call(s) (allocated as channel(s)) from itself to each
of the internal phone(s) registered as "1010". This is/are B-leg(s) calls/channels.

If one phone answers, then FreeSWITCH will join (eg mix, bridge) the media
streams of the two channels/calls, and they (the caller and callee) can talk to each
other. Now the ongoing complete "call", is actually composed by two calls/channels:
A-leg (from caller to FreeSWITCH) and B-leg (from FreeSWITCH to callee).

If nobody answers, after a timeout the B-leg(s) (calls/channels originated by
FreeSWITCH to 1010 phones) will die (canceled by FreeSWITCH).

The A-leg will go to voicemail. The complete "call" is now composed by only one
channel (also known as call), the A-leg, from the caller to FreeSWITCH.

Channel Variables
Each individual channel (call) in FreeSWITCH has a number of associated
characteristics and values, known as "channel variables".

You use variables to get informations about the channel internals and to control the
channel behavior.

Some of channel variables are assigned from the inception of the channel. Some of
them change value during the life of the channel. Some variables are read-only. Some
channel variables are writable, this means we can alter their value. You can (and
often do) create variables in a channel, via dialplan or scripting. Specific channel
variables modify the behavior of the channel, and you can take control of it by
writing ("set") a variable value.

There are an incredible number of channels variables that are already set
automatically when a call is processed.

For a first impact, connect via ssh to a FreeSWITCH server with demo configuration,
execute /usr/local/freeswitch/bin/fs_cli, and then call 9192

 <extension name="show_info">
 <condition field="destination_number" expression="^9192$">
 <action application="answer"/>
 <action application="info"/>
 <action application="sleep" data="250"/>
 <action application="hangup"/>
 </condition>
 </extension>

This is a simple extension that checks destination_number, if it matches 9192 then it
answers the call, execute the "info" application, then sleeps for a quarter of a second,
and hangups.

As we'll see later in this chapter, the "info" application dumps on console every
channel variable and its value. It's a precious debug tool!

This is an extract of what will be printed out in green characters on your terminal
(actually this is a very small part. Try it for yourself!):

2017-05-25 17:34:15.625917 [INFO] mod_dptools.c:1743 CHANNEL_DATA:
Channel-State: [CS_EXECUTE]
Channel-Call-State: [ACTIVE]
Channel-State-Number: [4]
Channel-Name: [sofia/internal/1011@lab.opentelecomsolutions.com]
...
variable_direction: [inbound]
variable_uuid: [12cd1ed7-d04a-40a8-b1b5-495af077c69c]
variable_session_id: [2]

variable_sip_from_user: [1011]
variable_sip_from_uri: [1011@lab.opentelecomsolutions.com]
...
variable_accountcode: [1011]
variable_user_context: [default]
variable_effective_caller_id_name: [Extension 1011]
variable_effective_caller_id_number: [1011]
variable_outbound_caller_id_name: [FreeSWITCH]
variable_outbound_caller_id_number: [0000000000]
variable_callgroup: [techsupport]
variable_user_name: [1011]
variable_domain_name: [lab.opentelecomsolutions.com]
...
variable_endpoint_disposition: [ANSWER]
variable_current_application: [info]

All the output lines with "variable_" prefix can be accessed in dialplan using the ${}
construct. For example, the last output line, "variable_current_application: [info]",
means: the channel variable "${current_application}" has value "info". We can write
a new dialplan extension to demonstrate it.

<extension name="giovanni_01">
 <condition field="destination_number" expression="^290864$">
 <action application="answer"/>
 <action application="log" data="WARNING the value of current_application channel variable is: ${current_application}"/>
 <action application="hangup"/>
 </condition>
</extension>

We insert this new extension at the beginning of the
/usr/local/freeswitch/conf/dialplan/default.xml file, just after

<include>
 <context name="default">

Then from fs_cli, be sure to type: "fsctl loglevel 5", and then "reloadxml". Now, call
290864 (numerology: 29 August 1964 is my birthday).

Your terminal will show something similar to the following:

Now, let's set a variable and read it back. Add three lines:

<extension name="giovanni_02">

 <condition field="destination_number" expression="^290864$">
 <action application="answer"/>
 <action application="log" data="WARNING the value of current_application channel variable is: ${current_application}"/>
 <action application="log" data="WARNING the value of giovanni_nice_guy channel variable is: ||${giovanni_nice_guy}||"/>
 <action application="set" data="giovanni_nice_guy=verymuch"/>
 <action application="log" data="WARNING the value of giovanni_nice_guy channel variable is: ||${giovanni_nice_guy}||"/>
 <action application="hangup"/>
 </condition>
</extension>

From the console, reloadxml, and then call 290864 again.

As we can see from the output, the variable was not existing before we assigned
("set") her.

For more in deep coverage of channel variables, their characteristics, their usage to
control FreeSWITCH, and much more, see the Chapter 9, Dialplan in Deep.

Regular Expressions
Regular expressions (regex, regexes) are at the heart of dialplan, and used in many
other parts of FreeSWITCH configuration.

They are an uber-clever way to analyze, slice, dice, and massage text strings. We in
FreeSWITCH we use the best and brightest, the greatest regular expressions of them
all: Perl Compatible Regular Expressions (PCRE). Isn't that beautiful? It is.

A regular expression checks if a string matches a pattern (the pattern being the regex).
A regular expression can also substitute parts of the strings with something else.
Also, regular expressions can "select" a part of a string, and reuse it in returning the
result.

In dialplan regexes are used to define the "expression" criterion of the "condition"
tag.

The construct most used in FreeSWITCH demo dialplan is as follows:

<extension name="giovanni_03">
 <condition field="destination_number" expression=""^(1234)$">
 <action application="log" data="WARNING this is $1"/>
 </condition>
</extension>

If we insert this extension at begin of default.xml demo dialplan, reloadxml, and then
call 1234, we have a condition that matches if the destination_number channel
variable string value is exactly "1234" (will not match a longer string). This regex
has caret ()̂ as first character, meaning "beginning of string", dollar sign ($) as last
character, meaning end of string, and some characters in between, enclosed by round
parenthesis. Round parenthesis grab what's inside them, and put it in a "register". In
this case, they put 1234 in register $1 (if there were a successive couple of
parenthesis, they would put the grabbed text into the $2 register. And so on, and so
on.

Let's look at a more complex use of regular expression:

<extension name="giovanni_04">
 <condition field="destination_number" expression="^1800(\d{3})(\d{2}).*$">
 <action application="answer"/>
 <action application="log" data="WARNING this is $1 and this is $2"/>
 <action application="hangup"/>
 </condition>
</extension>

Insert the extension at beginning of default.xml dialplan, then reloadxml and call

18009876543.
Your output will be similar to the following:

The expression we used in condition, "^1800(\d{3})(\d{2}).*$", can be read as: this
condition matches if the field (destination_number) string value begins with 1800
then three digits then two digits then whatever until end of string. The first three digits
after 1800 will be put into $1 register (first parenthesis pair), the following two
digits into the $2 register.

The content of the registers persist only inside the present condition opening and
closing tags.

The following are some sample regular expressions and their meanings:

Pattern Meaning

123 Match any string containing the sequence "123"

^123 Match any string beginning with the sequence "123"

123$ Match any string ending with the sequence "123"

^123$ Match any string that is exactly the sequence "123"

\d Match any single digit (0-9)

\d\d Match two consecutive digits

^\d\d\d$ Match any string that is exactly three digits long

^\d{7}$ Match any string that is exactly seven digits long

^(\d{7})$ Match any string that is exactly seven digits long, and store the matched
value in a special variable named $1

^1?
(\d{10})$

Match any string that optionally begins with the digit "1" and contains an
additional ten digits; store the ten digits in $1

^(3\d\d\d)$ Match any four-digit string that begins with the digit "3", and store the
matched value in $1

We can test regular expressions from the FreeSWITCH command line, to be sure they
do what we want.

The regex FreeSWITCH console command needs at least two arguments: the data to
test and the pattern to match against. The arguments are separated by a | (pipe)
character. The regex command will return true if the data and the pattern match,
otherwise it will return false. You can try the following examples at fs_cli:

freeswitch@internal> regex 1234|\d

true

freeswitch@internal> regex 1234|\d\d\d\d

true

freeswitch@internal> regex 1234|\d{4}

true

freeswitch@internal> regex 1234|\d{5}

false

freeswitch@internal> regex 1234|̂ 1234$

true

freeswitch@internal> regex 1234|234

true

freeswitch@internal> regex 1234|̂ 234

false

The regex command also has a capture syntax that will store and return the registers'
values. The expression %0 contains the entire matched value whereas %1 contains the
first register, %2 contains the second, and so forth.

 freeswitch@internal> regex 18005551212|1?(\d\d\d)(\d\d\d)(\d\d\d\d)
 true
 freeswitch@internal> regex 18005551212|1?(\d\d\d)(\d\d\d)(\d\d\d\d)|%0
 18005551212
 freeswitch@internal> regex 18005551212|1?(\d\d\d)(\d\d\d)(\d\d\d\d)|%1
 800
 freeswitch@internal> regex 18005551212|1?(\d\d\d)(\d\d\d)(\d\d\d\d)|%2
 555
 freeswitch@internal> regex 18005551212|1?(\d\d\d)(\d\d\d)(\d\d\d\d)|%3
 1212
 freeswitch@internal> regex 18005551212|1?(\d\d\d)(\d\d\d)(\d\d\d\d)|%1%2%3
 8005551212
 freeswitch@internal> regex 18005551212|1?(\d\d\d)(\d\d\d)(\d\d\d\d)|%1-%2-%3
 800-555-1212
 freeswitch@internal> regex 18005551212|^7|%0
 18005551212

For more regex documentation, Internet is full of tutorials on how to use Perl Regular
Expressions (regexes), and there is a beautifully crafted page in Confluence
especially for use in FreeSWITCH. Search http://freeswitch.org/confluence for "regular
expression".

http://freeswitch.org/confluence

Actions and anti-actions
Actions and anti-actions live inside conditions. Actions are executed if the condition
expression matches. Anti-actions are executed if the condition don't match.

Let's look at an "hello world" example, insert the following at the beginning of
default.xml dialplan:

<extension name="giovanni_05">
 <condition field="destination_number" expression="^4321$">
 <action application="answer"/>
 <action application="log" data="WARNING YESSSSS"/>
 <anti-action application="log" data="WARNING NOOOOOOOOT"/>
 <action application="hangup"/>
 </condition>
</extension>

Then, as usual, reloadxml, and call 4321. Your terminal will show the following:

Now, call instead 5555 (or whatever):

As you can see, this time only the anti-action has been executed. There is no
"answer", and no explicit hangup (the hangup there is because when there are no
more (anti-)actions in the call's TODO list, then... hangup. What else?).

How dialplan processing works
A call is incoming to FreeSWITCH.
It lands in a specific dialplan context based on its technology, network characteristics
(profiles), or (if the call is originated by a registered user) based on explicit
assignment in the User Directory. Starting from the beginning of the context, the call
traverse the context, trying to match each extension, one after another.
Inside an extension, if a condition matches, actions and anti-actions contained in that
condition are added to the call's TODO list. Based on the value of the "break"
condition parameter, at each condition the call decides to stop, or to proceed to the
next condition.
Based on the value of the "continue" extension parameter, at each extension the call
decides to stop, or to proceed to the next extension.
After the call finishes traversing the dialplan context (because of "continue" or
because there are no more extensions to check) then all (anti-)actions stored in its
TODO list will be executed.

So, there are two separate phases: first phase is Dialplan Parsing (also known as
ROUTING phase), where the call traverses the dialplan and accumulates actions in
the TODO list (without executing them). The second phase is the EXECUTE phase,
in which all accumulated actions are batch-executed.

This can be clearly seen from the FreeSWITCH console if we pump up the loglevel,
type "fsctl loglevel 7", and then call 1234 again:

As you can see, the call enters the ROUTING phase, where it checks the extensions
of a specific dialplan context (in this case the "default" context) looking for matches.
Here the first extensions has a condition with an expression that fails to match. So, at
first thought we would expect to proceed to check the next extension. But this failed
condition has an anti-action inside, so actually we have a match! A negative match
still is a match, not only in romantic affairs.

So, after adding the anti-action to the TODO list, the call stops traversing the
dialplan context, and go forward to the EXECUTE phase.

If we delete (or comment out) the anti-action from the condition, and reloadxml,
when we call again we'll see that all the extensions in the context will be checked.

NB: It is important to remember that if you SETa channel variable in dialplan, and
THEN CHECK, it WILL NOT WORK as expected!

<extension name="giovanni_06">
 <condition field="destination_number" expression="^4321$">
 <action application="answer"/>
 <action application="set" data="myvariable=abc"/>
 </condition>
 <condition field="${myvariable}" expression="abc">
 <action application="log" data="WARNING YESSSSS"/>
 <anti-action application="log" data="WARNING NOOOOOOOOT"/>
 </condition>
</extension>

This is because the "action" of setting the variable will be executed in the EXECUTE
phase, while the checking of the variable is done at the previous ROUTING (parsing)
phase.

To make it work, you must "inline" the set action, so it will be executed at ROUTING
phase. The following extension works:

<extension name="giovanni_07">
 <condition field="destination_number" expression="^4321$">
 <action application="answer"/>
 <action application="set" data="myvariable=abc" inline="true"/>
 </condition>
 <condition field="${myvariable}" expression="abc">
 <action application="log" data="WARNING YESSSSS"/>
 <anti-action application="log" data="WARNING NOOOOOOOOT"/>
 </condition>
</extension>

Also, the following will never work (you cannot inline the result from
play_and_get_digits. Use a script instead):

<extension name="play_and_get_digits with say">

<condition field="destination_number" expression=" (̂6500)$">

<action application="play_and_get_digits" data="1 1 1 3000 # say:'press one for
technical support' silence_stream://250 choice \d+" />

</condition>

<condition field="${choice}" expression="1">

<action application="log" data="TECH SUPPORT!"/>

<anti-action application="log" data="OPERATOR"/>

</condition>

</extension>

Important dialplan applications
FreeSWITCH has many (hundreds) applications available for dialplan and scripting
usage. Most of them are provided by mod_dp_tools, but almost every FreeSWITCH
modules adds some applications to your toolbox.

Let's review some of the most popular building blocks, the ones you can start to
experiment with immediately.

answer
The answer application picks up the phone by establishing a media stream to the
calling party. In SIP terms, this causes FreeSWITCH to send a "200 OK" message,
negotiate the audio/video codecs to use (if not already determined), and begin the
flow of RTP packets.

Example:

<action application="answer"/>

bridge
The bridge application originate new call(s) as B-leg(s), and connects (mixes,
bridges) the media streams of the newly originated B-leg(s) to the streams of the
incoming call (also known as A-leg)

Argument syntax:

bridge data="<dialstring>[,<dialstring>][|<dialstring>]"

Dialstrings separated by commas are executed simultaneously. Dialstrings separated
by pipes are executed sequentially. The first phone to answer receives the call, at
which time dialing to all other phones is canceled.

Examples:

<action application="bridge" data="user/1000"/>
<action application="bridge" data="sofia/gateway/my_gateway_name/$1"/>

See the Dialstring formats section later in this chapter.

hangup
The hangup application disconnects the media streams and ends the call.

Argument syntax: Optional hang up cause.

Examples:

<action application="hangup"/>
<action application="hangup" data="USER_BUSY"/>

ivr
The ivr application sends the caller to a predefined IVR.

Argument syntax: Name of IVR to execute.

Example:

<action application="ivr" data="ivr_demo"/>

play_and_get_digits
The play_and_get_digits application will play a sound file to the caller, while at the
same time listening for DTMFs dialed by the caller, and act on them.

This is especially useful when scripting FreeSWITCH, allowing for full application
logic and control flow.

In dialplan, you can use it for simple interactions without invoking the ivr application
and its XML IVR language.

Argument syntax:

<min> <max> <tries> <timeout> <terminators> <file> <invalid_file> <var_name> <regex> [<digit_timeout>] ['<failure_ext> [failure_dp [failure_context]]']

Arguments:

min: Minimum number of digits to collect
max: Maximum number of digits to collect
tries: Number of attempts to play the file and collect digits
timeout: Number of milliseconds to wait before assuming the caller is done
entering digits
terminators: Digits used to end input if less than min digits have been pressed
(typically #)
file: Sound file to play while digits are fetched
invalid_file: Sound file to play when digits don't match the regex argument
var_name: Channel variable that digits should be placed in
regex: Regular expression to match valid digits
digit_timeout (optional): Number of milliseconds to wait in between digits
(defaults to timeout value)
failure_ext (optional): Destination extension to which the call should be
transferred if the caller does not enter a valid input value
* failure_dp (optional with failure_ext): Destination Dialplan type when using
failure_ext (almost always "XML")

failure_context (optional with failure_dp): Destination Dialplan context when using
failure_dp

Example:

<action application="play_and_get_digits" data="2 5 3 8000 # /path/to/sound_file.wav /path/to/invalid_sound.wav my_digits \d+ "/>
<action application="log" data="User entered these digits: ${my_digits}"/>

This example executes play_and_get_digits with the following parameters:

Looks for a minimum of two digits
Looks for a maximum of five digits
Tries three times
Waits 8 seconds before assuming the caller is done entering digits
Uses the # key as the terminator
Plays the sound file /path/to/sound_file.wav while collecting digits
Plays the sound file /path/to/invalid_sound.wav if invalid digits are dialed
Stores the dialed digits in the channel variable my_digits
Matches against the pattern \d+

playback
The playback application plays an audio file to the caller. Files can be in many formats
as supported by FreeSWITCH modules. The sound and music files included in
FreeSWITCH demo are all .wav files.

Argument syntax: absolute path to a sound file or relative path to the default sound
directory.

Examples:

<action application="playback"
 data="/absolute/path/to/sound.wav"/>
<action application="playback" data="voicemail/vm-goodbye.wav"/>

set
The set application sets a channel variable

Argument syntax:

<variable_name=value>

Example:

<action application="set" data="my_chan_var=example_value"/>
<action application="log" data="INFO my_chan_var contains ${my_chan_var}"/>

sleep
The sleep application pauses dialplan execution for the specified number of
milliseconds.

Argument syntax: Number of milliseconds to sleep.

Example:

<action application="sleep" data="1000"/>

transfer
The transfer application sends the call back traversing the dialplan. This causes an
entirely new parse (ROUTING) phase and EXECUTION phase to take place.

Argument syntax:

<destination number> [destination dialplan [destination context]]

Example:

<action application="transfer" data="9664"/>
<action application="transfer" data="12345 XML custom"/>

Dialstring formats
Dialstrings serve as arguments when originating (eg, creating new, outbound from the
FreeSWITCH server) calls.

Each endpoint module has its own dialstring syntax. The most important endpoint
modules are mod_sofia (supporting SIP signaling protocol) and mod_verto
(supporting VERTO protocol).

Call creation (origination) is made in dialplan by the application "bridge". If you are
in dialplan you are processing an incoming call, and the newly originated call(s) will
be "bridged" to the incoming.

All registered users can get their dialstring from User Directory (that's what happen
in demo configuration). In User Directory you can set a generic dialstring for all
users, and specially crafted dialstrings for a users' group and/or for an individual
user. Each value can be overridden the more specific you get.

Also, you can originate calls from command line (or from scripting), with the
"originate" command (see later in this section).

SIP (sofia)
The basic Sofia dialstring takes two different formats, depending on wheter we use a
gateway or not:

sofia/<profile name>/<user@domain>
sofia/gateway/<gateway name>/<user>

As we learned in Chapter 4, User Directory, SIP, and Verto, we can dial another SIP
Endpoint, either with or without a gateway. When using Sofia to dial through a
FreeSWITCH SIP profile, it is necessary to specify both the user and domain.
However, when dialing through a gateway it is not possible to include the domain
because this is already defined in the gateway configuration. Therefore, the following
is not allowed:

<!-- Wrong -->
<action application="bridge" data="sofia/gateway/my_gateway/user@1.2.3.4"/>

The correct syntax is as follows:

<!-- Correct -->
<action application="bridge" data="sofia/gateway/my_gateway/user">

The equivalent for dialing through the internal profile would look like
the following:

<!--Also correct -->
<action application="bridge" data="sofia/internal/user@1.2.3.4 /">

When dialing a user who is registered on your FreeSWITCH server there is a
shortcut available:

user/<user id>[@domain]

This syntax makes it very easy to dial another phone registered on your system. In
fact, Local_Extension in conf/dialplan/default.xml uses this method to connect calls to
registered users:

<action application="bridge" data="user/${dialed_extension}@{domain_name}"/>

The @domain parameter is optional if you have only one domain defined on your
FreeSWITCH server.

VERTO
Verto is much simpler than SIP, it connects users directly registered to the same
FreeSWITCH server. So, from FreeSWITCH dialplan point of view, is very similar
to the "user" SIP shortcut, and you don't have to bother too much:

 <action
 application="bridge"
 data="${verto_contact ${user id}@${domain}}"/>

It actually uses the verto_contact API command to find the underlying RTC data
needed to originate the call to the VERTO registered user.

Other dialstring formats
The following are a few more types of dialstrings:

loopback/<destination number>: This creates a call leg and puts it in the dialplan at
<destination_number>

freetdm//<channel>/<phone number>: This creates a call leg on a telephony
interface card (see http://wiki.freeswitch.org/wiki/FreeTDM for more information on using
traditional telephony hardware with FreeSWITCH)
group/<group name>[@domain]: This calls a group of users defined in User Directory

http://wiki.freeswitch.org/wiki/FreeTDM

Originate Command
The basic syntax of originate is as follows:

 originate <dialstring> <destination number>

It gets exactly the same dialtrings as the bridge application in dialplan. Actually, as
"destination number" argument it accepts dialplan applications, so you can have this
kind of command line:

originate sofia/internal/userA@firstdomain.com &bridge(sofia/internal/user@4.3.2.1)

This will originate a call to userA, and if userA answers, will originate an additional
call to userB. If userB answers, it will bridge the two calls and the two users will be
able to talk.

Summary
In this chapter, we discussed the following:

The basic structure of XML dialplan:
dialplan is divided into contexts
contexts contains extensions
extensions contains one or more conditions
conditions decides about the execution of contained actions and anti-actions

We then reviewed the meaning of "call legs" (A-leg is the incoming call, B-legs are
the outbound calls originated by FreeSWITCH in response to A-leg dialplan
processing).

We also looked at channel variables, how to set and check them, followed by an
explanation of how dialplan is traversed by accumulating "actions" in a TODO list
that's executed after dialplan traversal.

And the basic building blocks of useful extensions: applications and dialstrings.

In next chapter we'll see how to use XML to build much more powerful IVRs than
would be possible from dialplan.

Phrase Macros and XML IVRs
Interacting with the caller without unnecessary personnel involved is an age-old
telecommunications industry specialty.

Automated Attendants and Interactive Voice Response systems are two of the most
important and popular services almost any organization requires for its
communication platform.

Be it a simple call dispatcher, as in an Automated Attendant that routes a call, "press
1 for sales, press 2 for support", or a complex IVR that gathers proof of caller
identity and then queries a database for their bank balance status, FreeSWITCH can
serve it.

But what about the messages that will be read to the caller? Are we going to record
every possible phrase the customer will hear?

Nope, FreeSWITCH has the "phrase" construct, a flexible mechanism to compose
arbitrary phrases from short sound files, which are combined in real time,
dynamically, as needed. And then, yes, there is text-to-speech (TTS) too!

Phrase Macros and Voice Prompts
Phrase macros are FreeSWITCH's smart way to reuse, concatenate, and combine
sound files into voice prompts to be played in calls.

Voice prompts are what you hear when you call into any kind of IVR, digital
assistant, and so on. The most infamous of them is, "All our operators are busy at the
moment, please hold on."

Voice Prompts history
Voice prompts used to be of two kinds: the very costly kind, recorded by professional
actors, using high-end audio gear in professional studios, cut and polished by sound
engineers in post-production. The other kind was the free-as-in-beer, do-it-yourself,
very similar to the answering machine message recorded by the company secretary,
unprofessional, with background noises, wavering volume, and so on.

There was nothing between those two extremes. Also, a lot of work went into
recording and re-recording new prompts, reading text aloud. Such effort (and cost)
made totally impractical for voice applications to read an often updated text to the
caller.

Then a few text-to-speech applications appeared that sounded mechanical and fun,
like a robot in a Sixties B-movie, but for some kind of usage they were perfectly
adequate. People was quick to get used to "robot" voices. Alas, it was still a very
costly option, licensed per-concurrent channel, its implementation was non-trivial,
and so on.

Sound files in FreeSWITCH
One of the most popular features of FreeSWITCH is its ability to build almost any
kind of vocal interaction with callers, starting from a finite (and not so big) number
of sound files. Those files are located under the directory
/usr/local/freeswitch/sounds (audio files of music are there too, under the "music"
subdirectory).

Those sound files are hyper-professionally recorded in super audio studios by top
voice artists, and we even had a complete new set beautifully interpreted by the
Goddess of Telecom Voices, Allison Smith, presented at ClueCon 2017 (ClueCon is
the annual "from developers to developers" conference about VoIP, WebRTC,
FreeSWITCH, and all real-time communication and IoT, held in Chicago during
August). Yes, you get them all for free when you install FreeSWITCH.

The sound files in FreeSWITCH distribution contain single-words utterances,
numbers, short word associations, and the like:

Sound files locations, sampling rate and
fallbacks
In FreeSWITCH configuration (for example in dialplan, IVRs, phrases, scripts,
whatever), sound files are located by a full absolute path (that it, beginning with a
slash "/"), or by a relative path. When the path is relative, the file resolves to
$${sound_prefix}/relative_path, where relative_path is interpolated with the
sampling rate (frequency in Hertz) of the sound file (so FreeSWITCH do not have to
resample).

You can find the value of the $${sound_prefix} global variable in
/usr/local/freeswitch/conf/vars.xml file, or by typing the following into the
FreeSWITCH console:

eval $${sound_prefix}

For example, you call 5000 in demo configuration. You are answered by an IVR,
defined in /usr/local/freeswitch/conf/ivr_menus/demo_ivr.xml. That IVR starts with
the "demo_ivr_main_menu" phrase macro (defined in
/usr/local/freeswitch/conf/lang/en/demo/demo-ivr.xml). The first item in that macro
is as follows:

<action function="play-file" data="ivr/ivr-welcome_to_freeswitch.wav"/>

If your call is using PCMU audio codec (for example, g711), because that audio
codec is sampled at 8khz, then relative path "ivr/ivr-welcome_to_freeswitch.wav"
will be read from the file /usr/local/freeswitch/sounds/en/us/callie/ivr/8000/ivr-
welcome_to_freeswitch.wav.

If that file is not available, FreeSWITCH will first try to use the 48khz file with the
same filename (located in /usr/local/freeswitch/sounds/en/us/callie/ivr/48000/ivr-
welcome_to_freeswitch.wav) because the internal FreeSWITCH audio mixing
format is 48khz. If that is also unavailable, it will try 32khz, then 16khz. If they too
are unavailable, FreeSWITCH will look for the file in
/usr/local/freeswitch/sounds/en/us/callie/ivr/ivr-welcome_to_freeswitch.wav (for
example, with no sampling frequency interpolated in the path), and will play it by
autosensing its sampling rate. If nothing is there, FreeSWITCH will log an error and
continue with the next audio file.

Phrase Macros: Concatenating Sound
files
Phrase is a FreeSWITCH configuration XML construct that allows you to build
complex voice prompts from basic sound files. The individual sound files are read
one after another, interspersed with the chosen amount of silence.

Phrase macros definitions are found in files included by
/usr/local/freeswitch/conf/lang/en/en.xml ("en" is for English. Substitute "en" with
another international language code, for example, "fr" for French).

Let's have a look at the first lines of the most popular phrase macro from the demo
configuration, located at /usr/local/freeswitch/conf/lang/en/demo/demo-ivr.xml:

 <macro name="demo_ivr_main_menu" pause="100">
 <input pattern="(.*)">
 <match>
 <action function="play-file" data="ivr/ivr-welcome_to_freeswitch.wav"/>
 <action function="play-file" data="ivr/ivr-this_ivr_will_let_you_test_features.wav"/>
 <action function="play-file" data="ivr/ivr-you_may_exit_by_hanging_up.wav"/>
 ...
 ...
 </match>
 </input>
 </macro>

macro name (pause)
Macro "name" is what you will use in phrase invocations from dialplan or script. For
example: "phrase:demo_ivr_main_menu". The optional parameter "pause" will be
the number of milliseconds to sleep after playing each individual sound file that
constitutes the phrase. If you omit "pause," audio files will be read one after the other
seamlessly. Or, you can use the action "sleep" to insert a pause after "play-file."

input pattern
The regular expression in "input pattern" is checked against the optional input passed
as an argument to "phrase" (see Input Patterns and Registers, below). If that
expression matches, the phrase macro will execute the actions contained in the
"match" section, else if the input pattern is not matched, the phrase macro will
execute the actions contained in the "nomatch" section. An input pattern of ".*" will
match whatever input, and even no input at all (in most cases, in fact, you do not pass
any input to phrases).

match - nomatch
See input pattern before

action
With this XML tag, you define what the phrase macro will do. Most often, you will
"play-file" or "sleep" for a number of milliseconds. Those two actions are the
workhorses of audio file concatenation. Another useful action is "say," to correctly
pronounce numbers, dates, quantities, currencies, ordinals, spellings, and so on, with
consideration of the specific language (for example English, Chinese, and so on)
rules. Using the "execute" action, you can invoke any FreeSWITCH API.

Phrase Macros: Invocation, Patterns
and Registers
XML and regular expressions gives a lot of power to the phrase macro mechanism.
The "input pattern" we saw before is useful not only to select which actions the
phrase will execute (eg, those contained by "match" instead of those contained by
"nomatch" tags) but also to build dynamic phrases. Read on.

Phrase Macro Invocation
Phrase macros can be invoked with or without input arguments. So, the general
format is as follows:

phrase:macroname[:one or more arguments]

If present, the entire string (spaces included) after the phrase name (the phrase name
is terminated by the optional second colon) will be passed as an argument to the
macro.

Input Pattern and Registers
If the pattern matches, the phrase macro will find in registers the parts of input
between the pattern parentheses.

It is exactly the same as with the "expression" patterns in dialplan: let's say the input
pattern is " \̂d(\d{3})(\d)(.*)$"; if the input is "1234567ciao", the phrase macro will
then find "234" in $1, "5" in $2, and "67ciao" in $3.

Registers enable a single macro to be used to read variable contents to the caller.
Let's look at how a macro can be used to read the number of messages (new or
saved) in the caller's mailbox:

 <macro name="voicemail_message_count">
 <input pattern="^(1):(.*)$" break_on_match="true">
 <match>
 <action function="play-file" data="voicemail/vm-you_have.wav"/>
 <action function="say" data="$1" method="pronounced" type="items"/>
 <action function="play-file" data="voicemail/vm-$2.wav"/>
 <action function="play-file" data="voicemail/vm-message.wav"/>
 </match>
 </input>
 <input pattern="^(\d+):(.*)$">
 <match>
 <action function="play-file" data="voicemail/vm-you_have.wav"/>
 <action function="say" data="$1" method="pronounced" type="items"/>
 <action function="play-file" data="voicemail/vm-$2.wav"/>
 <action function="play-file" data="voicemail/vm-messages.wav"/>
 </match>
 </input>
 </macro>

In case the caller has only one new message, the phrase macro is invoked as "phrase:
voicemail_message_count:1:new." The first input patterns will match because the
first character of the argument string is "1." Also, that first character is enclosed by
parentheses in the pattern, and the first parentheses' content (that is, the character "1"
in this case) will go into the $1 register. The rest of the input, after a colon, used in
this case as separator, is again enclosed within parentheses. Its content will go into
the $2 register. In this case, $2 will contain the string "new."The phrase macro will
execute the actions contained in "match" tags and then exit - break-on-true. Registers'
values are used in actions: they give the argument to the "say" action, and they
compose the name of the file in "play-file." Also note that, in this case, that is ,
matching a pattern with one message (new or saved), the phrase macro will correctly
play the voicemail/vm-message.wav audio file, singular.

Let's look at what happens if the phrase macro is invoked for a caller with three
saved messages: "phrase: voicemail_message_count:3:saved."The first input pattern

will not match (the first argument character is not a "1"). The second input pattern is
" (̂\d+):(.*)$" and will match. All digits up to the colon will end up in the $1 register,
while the $2 register will contain the string "saved." Also, please note that in the
"match" section of this input pattern the file played to the caller is voicemail/vm-
messages.wav, plural. Clever, huh?

XML IVRs
IVRs are those Interactive Voice Response systems we all know and love (NOT):
"To learn about our special offer, press 2. To speak with an operator, please insert
the 48 digits of your membership card number, then press pound."The FreeSWITCH
XML IVR engine allows for building voice-menu-driven applications without
programming, so even your marketing drone colleague, after some short Pavlovian
conditioning, will be able to modify it himself to the latest fad.

FreeSWITCH XML IVR is basically a complex parameterized skeleton that takes a
lot of arguments, and an arbitrary number of voice menu items, to create a complete
application you can execute from a single dialplan extension.

Each voice menu item will react to DTMFs dialed by the caller, and will typically
execute a dialplan application (bridge, transfer, playback, and so on).

XML IVR allows for timeouts, multi-digit input, text-to-speech integration, max
wrong input acceptable attempts, submenus, back to main menu, menu repeat, and
many more features.

IVR in demo config
Let's first have a look at the IVR that answers extension 5000 of the demo
configuration. In /usr/local/freeswitch/conf/dialplan/default.xml dialplan it is defined
as follows:

 <extension name="ivr_demo">
 <condition field="destination_number" expression="^5000$">
 <action application="answer"/>
 <action application="sleep" data="2000"/>
 <action application="ivr" data="demo_ivr"/>
 </condition>
 </extension>

This is easily one of the most exercised single snippets of FreeSWITCH
configuration, because is so easy to use for testing purposes after a fresh installation.
The relevant line is <action application="ivr" data="demo_ivr"/>, which will
execute the "ivr" dialplan application, giving the string "demo_ivr" as argument.

The dialplan application "ivr" will look into FreeSWITCH configuration, searching
for a voice menu where the "name" field has the value "demo_ivr". In this case, it
will find it in the XML file /usr/local/freeswitch/conf/ivr_menus/demo_ivr.xml,
located in the default voice menus configuration directory. The filename can be
completely different; what is important is the value of the "name" field of the menu.

The voice menu "demo_ivr" has been written to exercise many features that constitute
the building blocks of an interactive system: originating and bridging a call, doing an
echo test, playing music on hold, connecting to one of the internal registered phones,
playing a voice sub-menu, returning to the main menu, transferring to another
extension in dialplan, and so on:

<include>
 greet-long="phrase:demo_ivr_main_menu"
 <menu name="demo_ivr"
 greet-short="phrase:demo_ivr_main_menu_short"
 invalid-sound="ivr/ivr-that_was_an_invalid_entry.wav"
 exit-sound="voicemail/vm-goodbye.wav"
 confirm-macro=""
 confirm-key=""
 tts-engine="flite"
 tts-voice="rms"
 confirm-attempts="3"
 timeout="10000"
 inter-digit-timeout="2000"
 max-failures="3"
 max-timeouts="3"
 digit-len="4">
 <entry action="menu-exec-app" digits="1" param="bridge sofia/$${domain}/888@conference.freeswitch.org"/>
 <entry action="menu-exec-app" digits="2" param="transfer 9196 XML default"/> <!-- FS echo -->
 <entry action="menu-exec-app" digits="3" param="transfer 9664 XML default"/> <!-- MOH -->
 <entry action="menu-exec-app" digits="4" param="transfer 9191 XML default"/> <!-- ClueCon -->

 <entry action="menu-exec-app" digits="5" param="transfer 1234*256 enum"/> <!-- Screaming monkeys -->
 <entry action="menu-sub" digits="6" param="demo_ivr_submenu"/>
 <entry action="menu-exec-app" digits="/^(10[01][0-9])$/" param="transfer $1 XML features"/>
 <entry action="menu-top" digits="9"/> <!-- Repeat this menu -->
 </menu>
<!-- --- -->
 <menu name="demo_ivr_submenu"
 greet-long="phrase:demo_ivr_sub_menu"
 greet-short="phrase:demo_ivr_sub_menu_short"
 invalid-sound="ivr/ivr-that_was_an_invalid_entry.wav"
 exit-sound="voicemail/vm-goodbye.wav"
 timeout="15000"
 max-failures="3"
 max-timeouts="3">
 <entry action="menu-top" digits="*"/>
 </menu>
</include>

The general workingsare probably already clear on first read. Also, please test it;
you'll see that as time passes, it will become very familiar. In the next section, we'll
look at the usage of each argument field that determines the voice XML "menu"
behavior, and how to add "entries" to it (for example, actions that will be executed
by the voice menu when the caller dials some DTMFs).

XML voice menu fields
You can think of a "menu" in XML IVR as a general frame whose different elements
change behavior based on parameters in the menu definition. That menu frame defines
what will be told to the caller at first iteration - which usually include an initial
greetingsuch as "thanks for calling ACME," followed by instructions on IVR usage:
"press 1 for conference, press 2 for echo test," and so on. Another field defines what
will be played to the caller in subsequent passes (for example, if you press 9 to hear
the menu again, you will not be thanked for calling, you'll be read the instructions
directly). Fields define what will be read before hanging up on the caller, or after an
invalid input (for example, pressing 4 when only allowed to dial 1-3, 5-7, *, and #).

All fields that define what will be read can be a "phrase" construct, a sound file in
the default sound directory, a sound file with an absolute path, or a "say" TTS
construct (that is, using the defined Text-To-Speech engine)

name
This is the name that will be referred to by the dialplan "ivr" app. It has nothing to do
with the filename. A single XML file can contain multiple menu definitions, and they
will be found by the "name" field (as long as the file is in the ivr-menus directory).

greet-long
This is what will be read to the caller at first pass; you may want to include your
company name and a salutation to the caller, followed by the instructions on how to
use the IVR, "press 1 for sales, press 2 for support," and so on.

greet-short
Here you define what will be read to the caller on subsequent passes, when she
comes back from a submenu, or when she wants to re-listen to the menu. Usually,
instructions here will be terse; no cheers, and so on.

invalid-sound
This is read when the caller inputs a DTMF combination that is not reflected in the
menu "entries". Here you want to read the caller something like, "the number you
have entered is not a valid option."

exit-sound
This is read when the menu is exiting, before hanging up on the caller (because of too
many wrong inputs, timeouts waiting for inputs, and so on).

timeout
This is the time in milliseconds the voice menu will wait for the caller to begin
entering DTMFs, after greet-long or greet-short has been read. After expiration, the
greeting will be re-read until max-timeouts times.

inter-digit-timeout
This defines how many milliseconds to wait for the next digit, when multi-digit input
is possible (for example digit-len is higher than 1), digit-len has not been reached,
and the caller has not pressed confirm-key. When expired, the digits entered so far
are considered the complete input, and checked against the menu entries.

max-failures
This defines how many invalid inputs will cause the invalid-sound to be played, and
then the greeting to be re-read, before the menu goes to the exit-sound and then hangs
up.

max-timeouts
This defines how many times the absence of input will cause the invalid-sound to be
played, and then the greeting to be re-read, before the menu goes to exit-sound, and
then hangs up.

digit-len
This is the maximum number of digits the caller is allowed to enter as a single input.
For example, you may want this to be 4 to be able to accept as input the digit
sequences 1001 to 1019, corresponding to "Local_Extension" registered phones in
the demo dialplan. The caller will be allowed to enter shorter digit sequences by
terminating the sequence using "confirm-key" (usually #), or by waiting for "inter-
digit-timeout."

tts-engine
This is the name of the Text-To-Speech engine registered in FreeSWITCH
configuration, often "flite" for testing, or "cepstral" for production.

tts-voice
This is the name of the "voice" parameter that will be passed to TTS engine. TTS
engines can use different voices, for example male, female, with regional accents,
and so on. As a curiosity, the "rms" voice of the flite TTS engine has been sampled
from Richard Marshall Stallman, the founder and main champion of the GNU project.

confirm-key
The DTMF caller will send to terminate an input sequence before entering all digit-
len digits. The default is #.

XML voice menu entries and actions
Between the opening and closing "menu" XML tags, you may want to put the real
meat on the bones, that is: what will happen when the caller sends one or more
DTMFs.

Those are the menu entries, in the form of an XML "entry" tag, with "action" and
"digits" as mandatory attributes, and an optional "param" attribute:

<entry action="menu-play-sound" digits="7" param="say:This is the seventh option"/>

We'll look at the possible values for "action" in the following paragraphs; "digits" is
the complete DTMF sequence the caller must send for the menu to execute the action
(see before digit-len and confirm-key), while the "param" value is obviously passed
as a parameter to the action.

In the following screenshot,we can see the debug output from the FreeSWITCH
console when we call "5000" in the demo configuration and then dial 7 (we have
added the entry for the digit 7, as in the previous entry example):

menu-exec-app
This is the workhorse of the IVR menu. It allows for executing a FreeSWITCH
dialplan application, passing param as arguments. See also "action" in the Chapter 6,
XML Dialplan.

menu-play-sound
This plays a sound file (located by an absolute path or by a path relative to the
default sound directory), a "phrase:" construct, or a "say:" construct for TTS.

menu-sub
This will execute (that is, it will go to) another XML voice menu, identified by its
name.

menu-back
From a sub-menu, this goes back to the previous XML voice menu.

menu-top
From a sub-menu, this goes back to the originally called-into, "top", XML voice
menu.

menu-exit
You may not believe this, but menu-exit actually exits the menus!

Nesting XML IVRs
You have two choices for nesting menus (that is, for having one entry in an XML
voice menu that sends the caller to another voice menu, with its own different entries,
possibly with the same "digits" attribute as the previous voice menu).

You can use the "menu-sub" action, which gives you, for free, the complementary
"menu-back" action. This is very handy for simple applications where only a couple
voice menus are connected, and no complex inter-menus logic is involved.

In all other cases, and in cases where you cannot anticipate future development, use
the "transfer" dialplan application as param in a menu-exec-app action. So, you will
transfer to another extension in the dialplan, and you edit the dialplan so that your
other voice menu is waiting there in an "ivr" dialplan application. This technique is
much easier to use in a complex application, where there can be many logical paths
between voice menus, and where you may expect to add or modify menus.

Summary
In this chapter, we looked at two FreeSWITCH mainstays for interacting with
callers:

The "phrase:" construct, which allows you to concatenate pre-recorded sound
bites to build meaningful and dynamic sentences, in real time
The "ivr" dialplan application and XML "menu" construct, which allow for easy
deployment of Automatic Attendant and Interactive Voice Response systems
without programming

In the next chapter, we'll look at how to use Lua scripting to bring the interaction with
the caller (and the call itself) to new, incredible heights.

Lua FreeSWITCH Scripting
Executing scripts to answer incoming calls is a common way to implement complex
FreeSWITCH applications. When you feel you are putting too much of your brain
power into constructing complex conditional XML dialplan extensions, it's time to
start scripting.

The gist is that you create an extension in the dialplan, and this extension will only be
one line: execute the script. Then the script will do it all. As they say: You do your
best, script do the rest.

The main advantage of executing a script is that you are using a proper programming
language, with all the usual programming constructs required to manage whatever
complexity with ease (that's what programming languages are made for).

In this chapter, we'll first have a look at the extensive FreeSWITCH scripting
capabilities, and then we'll delve into Lua FreeSWITCH scripting, examining
concepts and constructs that will also be useful for the other scripting languages
supported by FreeSWITCH.

Many scripting languages
FreeSWITCH supports many scripting languages, both from the dialplan and
command line. For each language, a specific FreeSWITCH module implements the
dialplan and command line interface.

The best thing is that support for all of them comes from the same source code base:
we use the Simplified Wrapper and Interface Generator (SWIG, http://www.swig.org/)
to make the core FreeSWITCH library accessible to scripting.

The main advantage of using SWIG is that, in each resulting scripting language, the
FreeSWITCH objects, methods, and functions all look the same, with the same
arguments and return values. In fact, all the scripting languages access the same APIs
from the FreeSWITCH core library (the same library used by the FreeSWITCH
executable itself). SWIG ensures that this library interfacing is done in the same way
for all scripting languages, instead of duplicating efforts, avoiding confusing different
ways to call into the APIs.

So, there is basically only one documentation effort on how to script FreeSWITCH,
and then each specific scripting language will add its own syntactic sugar. This even
makes it very easy to rewrite an application from one scripting language to another,
should the need arise.

The most popular languages supported by FreeSWITCH via SWIG are as follows:

Lua
Perl
JavaScript
Python
All .NET, Mono, and Managed languages (C# and so on)
Java

Anyway, after initializing language-specific objects, you will end up calling
FreeSWITCH APIs (the same as you use from the FreeSWITCH console command
line), executing dialplan applications, or interacting with FreeSWITCH Events.

http://www.swig.org/

Why Lua?
So, which language is better for FreeSWITCH scripting?

There is no science at all, here - all here is broscience. Yes, Lua is definitely more
embeddable and faster than other languages; so what?

Scripting in FreeSWITCH has a precise role: to complement the dialplan for
complex applications. That is, you use the dialplan for high-cps call dispatching. Or
you use a custom C FreeSWITCH module. I would bet that, in any real-world
scenario where scripting is used in its correct role, there is no meaningful
performance gap between different scripting languages. Network delays, database
queries, and caller reaction times will always be much more important than whatever
script initialization/execution time.

That said, you balance your language choice between two sides: the language(s) you
already know (this will make you immediately productive), and the popularity of its
use with FreeSWITCH (so you will have immediate answers when you ask the
community in IRC, HipChat, or mailing list).

The most popular scripting language in the FreeSWITCH community, by a large
margin, is Lua. Obviously, this has many benefits, such as a lot of easily accessible
examples, and so on. If you are in any doubt about which language to use, use Lua.
Other popular choices are Perl, JavaScript, and Python.

Even if you choose another language, this chapter will serve you well: you will have
to change the grammar and constructs for those of your preferred language, but all the
concepts will still apply, and the examples will be easily translated.

Basic Lua syntax
Lua has a simple syntax that is easy to both learn and read. The following is a simple
script:

-- This is a sample Lua script
-- Single line comments begin with two dashes
--[[
 This is a multi-line comment.
 Everything between the double square brackets
 is part of the comment block.
]]
-- Lua is loosely typed
var = 1 -- This is a comment
var ="alpha" -- Another comment
var ="A1" -- You get the idea...
-- Lua makes extensive use of tables
-- Tables are a hybrid of arrays and associative arrays
val1 = 1
val2 = 2
my_table = {
 key1 = val1,
 key2 = val2,
 "index 1",
 "index 2"
}
--[[
 When the Lua script is called from FreeSWITCH
 you have a few magic objects. The main one is
 the 'freeswitch' object:
 freeswitch.consoleLog("INFO","This is a log line\n")

 If script is executed from dialplan (eg: there is
 an incoming call to manage) you have the 'session'
 object which lets you manipulate the call:
 session:answer()
 session:hangup()
]]
freeswitch.consoleLog("INFO","my_table key1 is '" .. my_table["key1"] .."'\n")
freeswitch.consoleLog("INFO","my_table index 1 is '" .. my_table[1] .."'\n")
-- Access arguments passed in
arg1 = argv[1] -- First argument
arg2 = argv[2] -- Second argument
-- Simple if/then
if (var =="A1") then
 freeswitch.consoleLog("INFO","var is 'A1'\n")
end
-- Simple if/then/else
if (arg1 =="ciao") then
 freeswitch.consoleLog("INFO","arg1 is 'ciao'\n")
else
 freeswitch.consoleLog("INFO","arg1 is not 'ciao'!\n")
end
-- String concatenation uses ..
var ="This" .." and " .. "that"
freeswitch.consoleLog("INFO","var contains '" .. var .."'\n")
freeswitch.consoleCleanLog("This Rocks!!!\n");
-- The end

Save this script as /usr/local/freeswitch/scripts/test2.lua, and then call it from the
FreeSWITCH console, as lua test2.lua ciao cucu:

Lua and FreeSWITCH
Calling a Lua script from FreeSWITCH makes one object available: the
"freeswitch" object (from which you can create other basic FreeSWITCH-related
objects).

You can execute a Lua script from FreeSWITCH console in two ways: lua and luarun.
If you execute the script with lua, it will block your console until the script returns, as
though it was the console thread itself to execute the script. Only after the script has
exited will you see console messages. If instead you use luarun, a new thread will be
created that will run the script (in this case the script will have no access to the stream
object) completely independently from the console.

If the Lua script has been called from dialplan (an incoming call matches an
extension where a lua action is executed), then an additional object is automatically
already available: session. The object session represents the call leg and lets you
interact with it (answer, play media, get DTMFs, hangup, and so on).

Let's play a little with the session Lua object. First, create a new dialplan extension
that will execute the Lua script when a user dials 9910. Edit the file
/usr/local/freeswitch/conf/dialplan/default/01_lua_example.xml to be:

<extension name="Simple Lua Test">
 <condition field="destination_number" expression="^(9910)$">
 <action application="lua" data="test3.lua"/>
 </condition>
</extension>

Save the file, launch fs_cli, and issue reloadxml. Our dialplan is now ready to call the
Lua script named test3.lua. Then create the test3.lua script in the freeswitch/scripts/
directory, and add the following code lines:

-- test3.lua
-- Answer call, play a prompt, hang up
-- Set the path separator
pathsep = '/'
-- Windows users do this instead:
-- pathsep = '\'
-- Answer the call
freeswitch.consoleLog("WARNING","Not yet answered\n")
session:answer()
freeswitch.consoleLog("WARNING","Already answered\n")
-- Create a string with path and filename of a sound file
prompt ="ivr" ..pathsep .."ivr-welcome_to_freeswitch.wav"
-- Play the prompt
freeswitch.consoleLog("WARNING","About to play '" .. prompt .."'\n")
session:streamFile(prompt)
freeswitch.consoleLog("WARNING","After playing '" .. prompt .."'\n")
-- Hangup
session:hangup()
freeswitch.consoleLog("WARNING","Afterhangup\n")

Save the script. There is no need to reloadxml or anything else: scripts are
automatically reloaded from filesystem if they have been modified. Using a phone
that is registered on your FreeSWITCH server, dial 9910. You will hear the sound
prompt being played, and then FreeSWITCH will hangup the call.

Before placing the call, you set the loglevel to 6 or 7, to see what's happening inside
FreeSWITCH (level 7 is DEBUG, and will show you the complete internals. Here
we use level 6, INFO, for the sake of the screenshot):

Now, let's have a look at the various objects you'll find or create in a Lua
FreeSWITCH script.

freeswitch
This is the main object, and you use its methods to create all the other FreeSWITCH-
related objects (see following). Also, it has a number of non-object-creating
methods, the most important of which are as follows:

freeswitch.consoleLog("warning","lua rocks\n")
freeswitch.bridge(session1, session2)
freeswitch.msleep(500)
my_globalvar = freeswitch.getGlobalVariable("varname")

freeswitch.Session and session
This object represents a call leg. You create an outbound call leg, giving freeswitch.
Session a dialing string as an argument:

new_leg = freeswitch.Session("user/1011")

Let's test an example script that originates a call to a phone registered as 1011, then
originates another leg to another phone (registered as 1010), and bridge the two legs
so they can talk. Save this script as /usr/local/freeswitch/scripts/test4.lua, and then call
it from the FreeSWITCH console, typing lua test4.lua, then run it again typing luarun
test4.lua (hint: with luarun the console will not block):

freeswitch.consoleLog("WARNING","Before first call\n")
first_session = freeswitch.Session("user/1011")
if (first_session:ready()) then
 freeswitch.consoleLog("WARNING","first leg answered\n")
 second_session = freeswitch.Session("user/1010")
 if (second_session:ready()) then
 freeswitch.consoleLog("WARNING","second leg answered\n")
 freeswitch.bridge(first_session, second_session)
 freeswitch.consoleLog("WARNING","After bridge\n")
 else
 freeswitch.consoleLog("WARNING","second leg failed\n")
 end
else
 freeswitch.consoleLog("WARNING","first leg failed\n")
end

When the FreeSWITCH Lua script has been executed from dialplan (as opposed to
executing the script from the console), you have a session object named session
already existing, representing the inbound A-leg. Let's rewrite the previous example
to be called from dialplan, edit the file /usr/local/freeswitch/scripts/test5.lua:

freeswitch.consoleLog("WARNING","before first leg answered\n")
session:answer()
if (session:ready()) then
 freeswitch.consoleLog("WARNING","first leg answered\n")
 second_session = freeswitch.Session("user/1010")
 if (second_session:ready()) then
 freeswitch.consoleLog("WARNING","second leg answered\n")
 freeswitch.bridge(session, second_session)
 freeswitch.consoleLog("WARNING","After bridge\n")
 else
 freeswitch.consoleLog("WARNING","second leg failed\n")
 end
else
 freeswitch.consoleLog("WARNING","first leg failed\n")
end

Then, create the dialplan extension, in the
/usr/local/freeswitch/conf/dialplan/default/02_lua_example.xml file:

<extension name="Another Lua Test">
 <condition field="destination_number" expression="^(9911)$">
 <action application="lua" data="test5.lua"/>
 </condition>
</extension>

Type reloadxml from the console to activate the new extension. This time we'll call
9911 from a registered phone. The script will answer our call, then originate another
call to the phone registered as 1010, and will bridge the two legs together so we can
talk:

Another important hint you get from the execution of those scripts is that, when two
legs are bridged, the script will stop at the "bridge" script line until one of the two
legs hangs up (so, the bridge ends). While the bridge is up, our script simply waits
for the bridge to end. If you want the script to continue immediately after bridging,
from a main script you would need to spawn another thread, find the uuid of each call
leg from the new thread, and use the bridge action from it (this is a very advanced
topic; we will not further elaborate here). Session objects, perhaps together with API
objects, are the ones you will use most often in your FreeSWITCH scripting. They
have a lot of methods, corresponding to the various manipulations and interactions
you can have with a call leg. Many of them are parallel/similar to dialplan
applications.

Following is a list of them; you'll find them commented and explained when you

search for Lua API Reference in our docs at https://freeswitch.org/confluence. We'll see many
of them in action later, in "XML demo IVR in Lua" section in this chapter:

session:answer
session:answered
session:bridged
session:check_hangup_hook
session:collectDigits
session:consoleLog
session:destroy
session:execute
session:flushDigits
session:flushEvents
session:get_uuid
session:getDigits
session:getState
session:getVariable
session:hangup
session:hangupCause
session:hangupState
session:insertFile
session:mediaReady
session:originate
session:playAndGetDigits
session:preAnswer
session:read
session:ready
session:recordFile
session:sayPhrase
session:sendEvent
session:setAutoHangup
session:setHangupHook
session:setInputCallback
session:setVariable
session:sleep
session:speak
session:say
session:streamFile
session:transfer
session:unsetInputCallback
session:waitForAnswer

https://freeswitch.org/confluence

freeswitch.API
This is the second workhorse of FreeSWITCH Lua scripting. The API object allows
you to send API commands to FreeSWITCH exactly as if you were at the console.

API commands are provided by mod_commands (look it up in https://freeswitch.org/confluence)
and by many other modules (in fact, almost all modules provide additional API
commands). You can see a list of all API commands available in your FreeSWITCH
server by issuing the following from the FreeSWITCH console (help will do the
same):

show api

Let's look at the freeswitch.API object doing its things: edit the file
/usr/local/freeswitch/scripts/test6.lua:

freeswitch.consoleLog("WARNING","before creating the API object\n")
api = freeswitch.API()
freeswitch.consoleLog("WARNING","after creating the API object\n")
reply = api:executeString("version")
freeswitch.consoleLog("WARNING","reply is: " .. reply .."\n")
reply = api:executeString("status")
freeswitch.consoleLog("WARNING","reply is: " .. reply .."\n")
reply = api:executeString("sofia status")
freeswitch.consoleLog("WARNING","reply is: " .. reply .."\n")
reply = api:executeString("bgapi originate user/1011 5000")
-- reply = api:executeString("originate user/1011 5000")
freeswitch.consoleLog("WARNING","reply is: " .. reply .."\n")
counter = 0
while(counter < 20) do
 reply = api:executeString("show channels")
 freeswitch.consoleLog("WARNING","reply #" .. counter .. " is: " .. reply .."\n")
 counter = counter + 1
 api:executeString("msleep 1000")
end
freeswitch.consoleLog("WARNING","about to hangup all calls in the server\n")
reply = api:executeString("hupall")
freeswitch.consoleLog("WARNING","reply is: " .. reply .."\n")
freeswitch.consoleLog("WARNING","GOODBYE (world)\n")

This script will first create the API object, then use it to interact with the
FreeSWITCH server as if it were you at the console (it issues the commands version,
status, and sofia status, then print back on the console what the server returned after
each API command). After those informative actions, our script takes a more
decisive route, and originates an outbound call leg toward a phone registered as 1011
to the server. Then it shows the result of the show channels command twenty times,
pausing for one second, and eventually hangs up all the calls on the FreeSWITCH
server.

You can execute it from the console by issuing lua test6.lua; it will block your console

https://freeswitch.org/confluence

until the script exits. Or you can execute it issuing luarun test6.lua and you'll see the
entire process in real time:

Also, note that you can use this same "execute a Lua script" technique from outside
the console, that is, from a shell or a cron script, in the following two forms:

fs_cli -x "lua test6.lua"
fs_cli -x "luarun test6.lua"

You will have no console printing of logs, obviously. To get your printouts back you
can delete the following line:

freeswitch.consoleLog("WARNING","reply #" .. counter .. " is: " .. reply .."\n")

and insert this one at its place:

stream:write("reply #" .. counter .. " is: " .. reply .."\n")

This will not work if you invoke the script with luarun (luarun has no access to the
stream object). So, you're stuck collecting your printouts at script's exit.

freeswitch.Dbh
The Dbh object is a handle to all kinds of databases supported natively by
FreeSWITCH, namely: SQLite (a filesystem-based database, suitable for moderate,
non-heavy parallel-concurrent access), PostgreSQL (a heavy duty, Enterprise- and
Carrier-ready, massively parallel concurrent-access database), and ODBC (ODBC
is a middleware that gives you access to all databases that have an ODBC-
compatible driver. Let's say that all databases have an ODBC driver. Yes, MySQL
has one, and ODBC is the way you connect to MySQL and MariaDB from
FreeSWITCH. By the way, I originally ported iODBC to Unix back when
archaeopteryxes were roaming the skies).

An alternative way to deal with databases is to use LuaSQL. Search https://freeswitch.org
/confluence about it.

The Dbh object gives you a handle from the FreeSWITCH server's database-pooling
mechanism. These are database connections that FreeSWITCH manages, so they're
always available and ready. This will not incur the overhead of opening a direct
database connection each time you need it (in a script that would be per execution).
Instead, you connect to the FreeSWITCH server, which will multiplex you in its own
pool of database connections. That is to say, the connection is already there, managed
by FreeSWITCH. You only need a handle for it. FreeSWITCH will create the
connection or grow the number of actual database connections in the pool as needed,
in the background.

You can then use the Dbh object to execute queries and all the usual database
operations. Let's look at Dbh in action: edit the /usr/local/freeswitch/scripts/test7.lua
file as follows:

dbh = freeswitch.Dbh("sqlite://my_db") -- sqlite database in subdirectory "db"
assert(dbh:connected()) -- exits the script if we didn't connect properly
dbh:test_reactive("SELECT * FROM my_table",
 "DROP TABLE my_table",
 "CREATE TABLE my_table (id INTEGER(8), name VARCHAR(255))")
dbh:query("INSERT INTO my_table VALUES(1, 'foo')") -- populate the table
dbh:query("INSERT INTO my_table VALUES(2, 'bar')") -- with some test data
dbh:query("SELECT id, name FROM my_table", function(row)
stream:write(string.format("%5s : %s\n", row.id, row.name))
end)
dbh:query("UPDATE my_table SET name = 'changed'")
stream:write("Affected rows: " .. dbh:affected_rows() .. "\n")
dbh:release() -- optional

dbh2 = freeswitch.Dbh("sqlite://core") -- sqlite database in subdirectory "db"
assert(dbh2:connected()) -- exits the script if we didn't connect properly
dbh2:query("select name,filename from interfaces where name='luarun'", function(row)
stream:write("name is ".. row.name .. " while module is " .. row.filename)
end)

http://www.swig.org/

dbh2:release() -- optional

You can run this script from console issuing lua test7.lua

The first part of this script interacts with an arbitrary database, it could be a remote
PostgreSQL or a local MySQL reached via ODBC. For the sake of simplicity, the
script actually creates the Dbh object by connecting to the my_db SQLite database in
the default FreeSWITCH directory for SQLite databases (/usr/local/freeswitch/db).
Then it uses the test_reactive method, which runs a query, and in case of error
performs two SQL operations: in this case a "drop table", and a "create table". This
method is useful to check if a database, table, or schema exists, and create it if
needed. Be aware: if you delete the table while FreeSWITCH is running, you will
need to restart FreeSWITCH for the test_reactive method to work properly. Then it
uses the query method to interact with the database (search for "Lua API Reference"
at http://freeswitch.org/confluence for details on how to print the query results, that is, the
callback function that will run for each returned row), and eventually release the
database handle.

The second part of the script connects to the FreeSWITCH internal core database,
where FreeSWITCH keeps its own internal data. In this case we query the interface
table, the same table that is queried when you issue "show interfaces" from the
console.

So, yes, you can read, write, and delete from FreeSWITCH internal databases and
tables, where FreeSWITCH keeps its guts and soul. Obviously, you can damage
FreeSWITCH by doing that. With great power comes great responsibility. If damage
you done, stop FreeSWITCH, delete all databases into the /usr/local/freeswitch/db/
directory, or all tables in the PGSQL|ODBC databases, and restart FreeSWITCH.
They will be re-created at startup.

http://freeswitch.org/confluence

freeswitch.Event
This object allows your script to inject an event in FreeSWITCH, which will then be
a full member of the FreeSWITCH Event System:

--Create Custom event
event = freeswitch.Event("custom", "dial::dial-result")
event:addBody("dial_record_id: " .. dial_record_id .. "\n" ..
 "call_disposition: " .. Disposition .. "\n" ..
 "campaign_number: " .. Campaign .. "\n" ..
 "called_number: " .. dial_num .."\n")
event:fire();

Events sent this way can interact with FreeSWITCH core itself, or with modules, or
be consumed by custom modules or applications. See in Chapter 11, ESL -
FreeSWITCH Controlled by Events about the role of events in FreeSWITCH.

For a complete example, see the following section.

freeswitch.EventConsumer
This object creates a listener/consumer for a certain kind of event in FreeSWITCH
Event System:

-- You may subscribe to specific events if you want to, and even subclasses
-- con1 = freeswitch.EventConsumer("CUSTOM")
-- or
-- con2 = freeswitch.EventConsumer("CUSTOM","conference::maintenance")

--listen for an event specific subclass
con3 = freeswitch.EventConsumer("CUSTOM", "ping::running")

-- create an event in that specific subclass
event = freeswitch.Event("CUSTOM", "ping::running")
event:addHeader("hi", "there")
-- fire the event
event:fire()

-- look in the listened events stack for events to "pop" out, block there for max 20 seconds
received_event = con3:pop(1, 20000)
if(received_event) then
 stream:write("event received\n")
 stream:write(received_event:serialize("text"))
else
 stream:write("no event\n")
end

Let's look at events in action: edit the /usr/local/freeswitch/scripts/test8.lua file:

You execute this script issuing lua test8.lua from the FreeSWITCH console. Note that
the binding messages are printed on console after the output of stream:write(), that is,
after our script has exited.

It would be interesting to split the script into two, one that listens and one that sends,
and execute them using two different console instances on the same FreeSWITCH
server.

freeswitch.IVRMenu
This object allows you to create XML IVR menus on the fly, with all the XML IVR
trappings such as greet_long, greet_short, and so on. See previous chapter.

Lua scripting IVR Applications
The concept of an Automated Attendant or IVR is to answer an incoming call, then
present some options for the caller to choose from via DTMFs, loop reading the
menu while waiting for the caller to input their choice, execute the chosen option or
tell the caller their input is wrong, and continue to loop until a timeout or a maximum
number of loops is reached. Options can be as complex as desired, involving any
kind of external interaction with databases, webservers, or other services. One form
of option can be to gather a long string of DTMFs from the caller, for example, a
numerical membership ID. Also, the caller must be able to jump from one menu to
another containing different options, by choosing the appropriate option. Heck, you
got the idea.

playAndGetDigits
The diva of IVRs in FreeSWITCH scripting is the Session object method
playAndGetDigits (initial "p" letter is small cap, rest is camel case). She's the one
all other things revolves around, like "Le Roi Soleil" in 1700 France.

Syntax
digits = session:playAndGetDigits (
 min_digits, max_digits, max_attempts, timeout, terminators,
 prompt_audio_files, input_error_audio_files,
 digit_regex, variable_name, digit_timeout,
 transfer_on_failure)

Arguments

min_digits The minimum number of digits required.

max_digits The maximum number of digits allowed.

max_attempts The number of times this function waits for digits and replays the
prompt_audio_file when digits do not arrive.

timeout The time (in milliseconds) to wait for a digit.

terminators A string containing a list of digits that cause this function to
terminate.

prompt_audio_file
The initial audio file to play. Playback stops if digits arrive while
playing. This file is replayed after each timeout, up to
max_attempts.

input_error_audio_file
The audio file to play when a digit not matching the digit_regex is
received. Received digits are discarded while this file plays.
Specify an empty string if this feature is not used.

digit_regex The regular expression used to validate received digits.

variable_name (Optional) The channel variable used to store the received digits.

digit_timeout

(Optional) The inter-digit timeout (in milliseconds). When
provided, resets the timeout clock after each digit is entered, thus
giving users with limited mobility the ability to slowly enter digits
without causing a timeout. If not specified, digit_timeout is set to
timeout.

transfer_on_failure
(Optional) In the event of a failure, this function will transfer the
session to an extension in the dialplan. The syntax is "extension-
name [dialplan-id [context]]".

Behavior
This method returns an empty string when all timeouts and retry counts are
exhausted.
When the maximum number of allowable digits is reached, the function returns
immediately, even if a terminator was not entered.
If the user forgets to press one of the terminators, but has made a correct entry,
the digits are returned after the next timeout.
The session has to be answered before any digits can be processed. If you do
not answer the call you, the audio will still play, but no digits will be collected.

XML demo IVR in Lua
The following is an educational rewrite, in Lua, of the demo XML IVR shipped in the
demo configuration, the one that answers when you call 5000 from a registered phone.
Write it in the /usr/local/freeswitch/scripts/test9.lua file:

conference_call_session = NIL
first_time_main_menu = false
first_time_submenu = false

api = freeswitch.API()
is_a_demo_user_extension = "false"

session:answer()
session:execute("playback", "silence_stream://1000")

if(not session:ready())then goto END end
digits = session:playAndGetDigits (1,4,1,10000,
 '#','phrase:demo_ivr_main_menu',
 'ivr/ivr-that_was_an_invalid_entry.wav',
 '^\\d$|^10[01][0-9]$','digits',2000)
first_time_main_menu = true
goto MAIN_MENU_OPTIONS

::MAIN_MENU_SECOND_TIME::
if(not session:ready())then goto END end
if(conference_call_session) then goto END end
digits = session:playAndGetDigits (1,4,2,10000,
 '#','phrase:demo_ivr_main_menu_short',
 'ivr/ivr-that_was_an_invalid_entry.wav',
 '^\\d$|^10[01][0-9]$','digits',2000)
first_time_main_menu = false
goto MAIN_MENU_OPTIONS

::MAIN_MENU_OPTIONS::
if(not session:ready())then goto END end
if(conference_call_session) then goto END end
if(digits == "") then
 freeswitch.consoleLog("WARNING", "No digits!\n")
elseif(digits == "1") then
 conference_call_session = freeswitch.Session(
 "sofia/internal/888@conference.freeswitch.org")

 if(conference_call_session:ready()) then
 conference_call_session:execute("playback", "silence_stream://1000")
 if(not session:ready())then goto END end
 if(not conference_call_session:ready())then goto END end
 freeswitch.bridge(session, conference_call_session)
 end
elseif(digits == "2") then
 session:execute("transfer", "9196 XML default")
elseif(digits == "3") then
 session:execute("transfer", "9664 XML default")
elseif(digits == "4") then
 session:execute("transfer", "9191 XML default")
elseif(digits == "5") then
 session:execute("transfer", "1234*256 enum")
elseif(digits == "6") then
 goto SUBMENU
else
 is_a_demo_user_extension = api:executeString(
 "regex " .. digits .. "|^(10[01][0-9])$")

 if(is_a_demo_user_extension == "true") then
 session:execute("transfer", digits .. " XML features")

 end
end
if(first_time_main_menu) then goto MAIN_MENU_SECOND_TIME end
goto END

::SUBMENU::
if(not session:ready())then goto END end
digits = session:playAndGetDigits (1,1,1,5000,
 '#','phrase:demo_ivr_sub_menu',
 'ivr/ivr-that_was_an_invalid_entry.wav',
 '*','digits',2000)
first_time_submenu = true
goto SUBMENU_OPTIONS

::SUBMENU_SECOND_TIME::
if(not session:ready())then goto END end
digits = session:playAndGetDigits (1,1,2,5000,
 '#','phrase:demo_ivr_sub_menu_short',
 'ivr/ivr-that_was_an_invalid_entry.wav',
 '*','digits',2000)
first_time_submenu = false
goto SUBMENU_OPTIONS

::SUBMENU_OPTIONS::
if(not session:ready())then goto END end
if(digits == "") then
 freeswitch.consoleLog("WARNING", "No digits in submenu!\n")
elseif(digits == "*") then
 goto MAIN_MENU_SECOND_TIME
end
if(first_time_submenu) then goto SUBMENU_SECOND_TIME end
goto END

::END::
if(session:ready())then
 session:execute("playback", "voicemail/vm-goodbye.wav")
end
freeswitch.consoleLog("WARNING", "END!\n")

Then, create the dialplan extension, in the
/usr/local/freeswitch/conf/dialplan/default/02_lua_example.xml file:

<extension name="XML IVR in Lua">
 <condition field="destination_number" expression="^(9912)$">
 <action application="lua" data="test9.lua"/>
 </condition>
</extension>

Type reloadxml from the console to activate the new extension, and call 9912 from a
registered phone.

As you can see, we need a way to simulate the XML IVR method to have different
prompts if it's the first time the menu is read to the caller, or if it's a successive pass.

We do that here by executing playAndGetDigits() the first time with the long prompt and
only one repetition as arguments, while in successive passes playAndGetDigits() gets the
short prompt and two repetitions (for a total of three, like in the demo XML IVR) as
arguments.

The regex we set in the main menu playAndGetDigits arguments, '^\\d$|^10[01][0-9]$',
means: a single digit, or 1000...1019 (1000...1019 are the extensions that correspond
to local users in the demo configuration). If anything else is entered, it is considered
invalid input. We also set the min digits to 1, the max digits to 4, and the inter-digits
timeout to 2 seconds.

When a user extension is entered (1000...1019), we then perform a completely
unnecessary further check, which is there just to show you how to use FreeSWITCH's
Perl Compatible Regular Expressions via an API object, instead of juggling with the
Lua's own quirky (in my opinion) regular expressions. Be aware that
is_a_demo_user_extension is a string value, not a boolean. That is, it contains the string
true or the string false as returned by FreeSWITCH when you issue the regex API
command.

In the submenu, we accept as playAndGetDigits input only the asterisk, and the min and
max digits are set to 1.

Also, you will see the extensive use of GOTO and labels, so we can safely jump
from one menu to another, and have a completely modular script where in future we
can insert additional menus or options as needed.

Always checking session:ready()
In this example script there is an almost compulsive checking of the state of the
Session objects - are they ready()? This is to check if the call has been answered, if it
has not been hungup; in a word: if someone is still there.

Checking session:ready() is important, not only for knowing at which point the caller
left your application, but also to avoid getting stuck in loops, waiting for the return of
a database query, or (worse) for the caller to give input.

You can end up with your script stuck, and FreeSWITCH will not be able to free the
associated resources (script and call data structures, and so on). Beware!

Summary
In this chapter, we've looked at the rationale for scripting in FreeSWITCH (is a
complement to XML dialplan for anything complex), and the many languages that
FreeSWITCH supports.

Then we used Lua, because of its popularity in the FreeSWITCH community, as an
example scripting language.

We looked at all the objects FreeSWITCH makes available to Lua scripting, and how
to use them, then we rewrote in Lua the XML demo IVR we looked at in the previous
chapter, as an example of a real-world extensible application.

In the next chapter, we'll look at how to go the next level with XML dialplan, having
a deep look into the concepts we barely scratched before.

Dialplan in Deep
We have now a more than basic understanding on how the XML configuration of
FreeSWITCH and its powerful XML dialplan work.

It's time to go beyond that feeling of "I know how to do things, but not quite why they
work that way".

Bear with me for this long and difficult chapter, and you will be rewarded with a
good understanding of all the machineries that contribute to FreeSWITCH flexibility
and versatility.

We'll see:

How to combine conditions
How to avoid dialplan pitfalls
All about variables and their usage
How to execute API commands from dialplan like we're on console
Specific idiolects to slice, dice and rinse variables and strings
Applications for interacting with live calls (barge and hotkeys)
A cookbook style trove of useful dialplan recipes

Where are the previous Dialplan
seasons?
We saw a lot in previous chapters, Test Driving the Demo Configuration and XML
Dialplan. We visited all the foundational concepts, and the basic techniques that
make FreeSWITCH ticking and spinning, happily chugging along your Real Time
Communication traffic growth.

Don't cheat on yourself; if you've not been there, go now. It will take little reading
time, even less if you're an experienced old FreeSWITCH hand, and it will ensure
we're on the same page using the same concepts and terms, and will make you happy.

I will not repeat in this chapter the bulk of those chapters, so pretty please, read those
chapters already.

XML Dialplan Recap
Following, in bullet format, how the dialplan works, its various components, their
interaction, and all the important terms' definitions

incoming call lands at the beginning of one of the dialplan contexts. This is the
"routing phase" of the call, phase during which the TODO list is built
to which context the call lands on is determined by modules' configuration (eg,
which SIPprofile - IPaddress/port pair - the call comes from) or by User
Directory (if call has been authorized)
a context is a list of extensions, call enters at beginning, and proceed toward
end of list. If call goes through the end, is hungup
if an extension has been evaluated as "matching" (see later), then the call
continue to the next extension depending on the value of the "continue"
extension's parameter
each extension is composed by one or more conditions, each condition may
contain one or more actions/anti-actions
the characteristics of the call (eg, dialed number), of the configuration (you
can set variables in vars.xml and elsewhere) and of the system (eg, time of day)
are all available via variables
each condition checks some specified variable against some (regular)
expression
a condition is evaluated true or false, if the expression matches or not the
specified variable(s)
if condition is true its actions will be pushed in the TODO list stack, it its
false its anti-actions will go in the TODO list
in a condition, the parameter "break-on" determines if checks will continue
with the next condition or stops here
actions (and anti-actions) are dialplan applications (provided by almost each
FreeSWITCH module, most of them provided by mod_dptools)
after the traversing of the dialplan context, and the checking against the
extensions, is completed then the call enters its "execution phase"
in "execution phase"all actions that were pushed in TODO list stack are
executed in order (FIFO)
the separation between 'routing phase" and "execution phase" implies that you
cannot set and check variables in the same dialplan pass (eg, not in next
conditions of same extension, nor in conditions inside any following
extensions). If you need that, use the "inline" parameter of the "set" application
the original incoming call that enters the dialplan is called "A-leg".
FreeSWITCH-originated calls to be bridged with the A-leg, are called "B-

legs"

More about conditions
Conditions are the control elements in XML dialplan. Inside each extension there is
at least one "condition" tag where the characteristics of the
configuration/system/incoming call, represented by variables, are checked against a
(regular) expression. If the condition is evaluated as true, the actions inside the
condition are added to the call's TODO list. If evaluated as false, anti-actions (if
present) are added to the TODO list. The general format is:

<extension name="is_looking_for_2900" continue="true">
 <condition field="destination_number" expression="^2900$" break="on-true">
 <action application="log" data="WARNING first TRUE"/>
 <anti-action application="log" data="ERR first FALSE"/>
 </condition>
 <condition field="destination_number" expression=".*">
 <action application="log" data="WARNING second TRUE"/>
 <action application="set" data="var01=value01" inline="true"/>
 <action application="set" data="var02=value02"/>
 <anti-action application="log" data="ERR second FALSE"/>
 </condition>
 <condition field="${var01}" expression="^value01$">
 <action application="log" data="WARNING third TRUE"/>
 <anti-action application="log" data="ERR third FALSE"/>
 </condition>
 <condition field="${var02}" expression="^value02$">
 <action application="log" data="WARNING fourth TRUE"/>
 <anti-action application="log" data="ERR fourth FALSE"/>
 </condition>
</extension>
<extension name="after_is_looking_for_2900">
 <condition field="destination_number" expression="^2900$">
 <action application="log" data="WARNING first of after TRUE"/>
 <anti-action application="log" data="ERR first of after FALSE"/>
 </condition>
</extension>

Let's have a quick look at this example, and please re-read previous chapters for
more details.

The first extension has a "continue" parameter set to true, so if this extension is found
"matching" (that is, its first condition is evaluated as true), the next extension will be
checked for a match. The default is the "continue" parameter set to false, so
traversing the dialplan looking for matches will stop at the first matching extension.
The first condition has a parameter "break" set to "on-true". So, if the expression is
evaluated as true, the next condition(s) will not be checked. The default is to break
"on-false" (eg, if the condition is false, do not check the next condition); other options
include "always" and "never".

The first condition expression can be read as "a string exactly matching '2900'",
because caret means "beginning-of-string" and dollar sign means "end-of-string".

The second condition will only be checked if the first condition is evaluated as false.
The second condition's anti-action will never be sent to the TODO list (because the
second condition expression ".*" will always match whatever the destination number
is).

The third condition will be true if the destination number is anything different from
2900 (because the variable in expression is set by the second condition and the
second condition is always true but is only tested if the first condition is false) while
the fourth condition will never be true: this because only the variable checked by the
third condition was set using the "inline" parameter. Your action of setting a variable
takes place after dialplan traversing is completed, if you don't use the "inline"
parameter of the "set" action.

The second extension is there just to show you that the first extension, because of the
"continue" parameter, will not stop dialplan traversing even when it is matching. The
following screenshot shows what happens when you call something other than
"2900".

regex operator (multiple variables
and/or expressions)
You can go to great lengths with a regular expression checking a variable. I mean,
you can have a regular expression so complex as to be indistinguishable from the line
noise picked up by old modems. But there are cases where you want to check the
relationship between two or more variables, or check multiple expressions which are
not easily combined.

In these cases you use the "regex" operator to combine multiple fields and
expressions into one only condition. You combine them with one only criterium:

all: all expressions must be evaluated as true for the condition to be true (logical
AND)
any: at least one expression must be evaluated as true for the condition to be
true (logical OR)
xor: one and only one of the expressions must be evaluated as true for the
condition to be true (e.g. if two expressions are evaluated as true, the condition
is then false)

Let's see an OR on two different fields:

<extension name="Regex OR example">
 <condition regex="any">
 <!-- If one is true then add actions in TODO-->
 <regex field="caller_id_name" expression="Sara Adasi"/>
 <regex field="caller_id_number" expression="^1001$"/>
 <action application="log" data="WARNING At least one matched!"/>
 <!-- If *none* are true then add anti-actions -->
 <anti-action application="log"
 data="ERR Call is neither from Sara Adasi nor from 1001!"/>
 </condition>
</extension>

nested conditions
Conditions can be nested one inside each other. Nested conditions is hard, very very
hard to get right. You may want to use a script, instead (yes, yes, you want to use a
script). See previous chapter for Lua scripting.

When a (main) condition has nested conditions, first its (main) expression is
evaluated, and its (main) actions are pushed in TODO list, then nested conditions
are evaluated, and their actions pushed.

Each condition has an implied parameter "require-nested", that is by default set to
"true".

When we have a condition with require-nested parameter set to "true", then ALL
its nested conditions must evaluate to true (AND its expression must evaluate to
true) for the condition to be evaluated to true.

If "require-nested" is set to false, then only the expression must evaluate to true for
the condition to be true, whatever the nested conditions are.

Conditions are checked the usual way (respecting the "break" parameter), and
actions inside conditions added to TODO list.

Let's see an example extension with nested conditions you can play with, checking
all possible cases and corner cases.

The expression of the (main) condition checks if the destination number of the
incoming call is "2901". If it is, then proceed to examine the nested conditions.

The first nested condition checks if the caller_id_number user's profile field
(equivalent to the form ${caller_id_number}) evaluate to "1011".

The second nested condition checks if the ${caller_id_name} variable (equivalent to
the form caller_id_name) evaluate to "Giovanni".

<extension name="nested_example">
 <condition field="destination_number" expression="^2901$" require-nested="false">
 <action application="log" data="ERR 00 CIDnum is ${caller_id_number} CIDname is ${caller_id_name}" />
 <action application="set" data="var_01=N/A" inline="true"/>
 <action application="set" data="var_02=N/A" inline="true"/>
 <action application="set" data="var_03=N/A" inline="true"/>
 <action application="set" data="var_04=N/A" inline="true"/>
 <action application="set" data="var_05=N/A" inline="true"/>
 <action application="log" data="ERR 01 I'm before..."/>
 <action application="set" data="var_01=01" inline="true"/>
 <action application="log" data="ERR 02 I'm before ${var_01} ${var_02} ${var_03} ${var_04} ${var_05}"/>
 <condition field="caller_id_number" expression="1011" break="on-false">

 <action application="log" data="ERR 03 I'm the first..."/>
 <action application="log" data="ERR 04 I'm the first CIDnum is ${caller_id_number}" />
 <action application="set" data="var_02=02" inline="true"/>
 <action application="log" data="ERR 05 I'm the first ${var_01} ${var_02} ${var_03} ${var_04} ${var_05}"/>
 </condition>
 <action application="log" data="ERR 06 I'm in between..."/>
 <action application="set" data="var_03=03" inline="true"/>
 <action application="log" data="ERR 07 I'm in between ${var_01} ${var_02} ${var_03} ${var_04} ${var_05}"/>
 <condition field="${caller_id_name}" expression="Giovanni" break="on-false">
 <action application="log" data="ERR 08 I'm the second..."/>
 <action application="log" data="ERR 09 I'm the second CIDname is ${caller_id_name}" />
 <action application="set" data="var_04=04" inline="true"/>
 <action application="log" data="ERR 10 I'm the second ${var_01} ${var_02} ${var_03} ${var_04} ${var_05}"/>
 </condition>
 <action application="log" data="ERR 11 I'm after..."/>
 <action application="set" data="var_05=05" inline="true"/>
 <action application="log" data="ERR 12 I'm after ${var_01} ${var_02} ${var_03} ${var_04} ${var_05}"/>
 </condition>
</extension>
<extension name="call_has_not_stopped_before_here">
 <condition field="destination_number" expression=".*">
 <action application="log" data="ERR NOT STOPPED BEFORE HERE"/>
 </condition>
</extension>

There are a lot of things you can change to test this example:

Obviously, all the "expression": 2901, 1011, Giovanni
In the first condition, require-nested can be set to "true" or "false"
The "inline" parameter of the "set" actions can be set to "true" or "false"
The "break" parameter of the nested conditions can be set to "on-false", "on-
true", "never", "always"

Let's begin testing with "require-nested" set to "false", all the "set" actions with the
"inline" attribute equal "true", and the "break" parameters of conditions set to "on-
false".

If we call 2901 with caller_id_number=1011 and caller_id_name=Giovanni (eg,
when all conditions are true) we get:

All variables are there since the beginning.

If we edit the extension and makes all the "inline" attributes equal "false", and reload
the dialplan, then we get:

Variables are set in each step.

Let's further explore what happens if only one nested condition is evaluated to be
true.
If we call 2901 with caller_id_number=1011 and caller_id_name=Sara we get:

But if we edit the extension and make the "require-nested" parameter of the first
condition to be true, then "reloadxml", and call again, we get:

Exactly like the one before, but this time the extension was not evaluated to be true
(because not all its nested conditions were true), and the next extension has been
evaluated. Note that also in this case, the actions belonging to conditions evaluated to
true have been pushed in TODO list.

There are another zillion permutations you can check by changing the various parts of
this example extension.

Bottom line: you may have the perfect use case for nested conditions, I would use a
Lua script instead.

Pitfalls to avoid
The most frequent Dialplan error made by people new to FreeSWITCH (and by
distracted old hands) is without any doubt setting a variable and expecting to be
able to check it some lines down for the assigned value. NOOOOOOOOOOOT.

In this book, I am repeating the concept very (too much?) often, trying to leave a mark
in your collective consciousness, but let's do it again here:

Dialplan is first "traversed" by the call, checking all extensions, conditions, and
so on for matches. Only after all the "traversing" is done and completed, are the
actions in the TODO list executed.
If there are condition matches, then actions will be put in the TODO list.
Some of those actions can be "set" actions, actions that assign variables.
So, we just added a variable setting action in the TODO list.
We then check the variable. Is it STILL OLD (or nonexistent) VALUE.
That's because we are still in the traversing phase, we have not yet executed the
"set" action.
Got it?
If you want your "set" action to take place at the moment it is encountered during
traversal, so the variable can be checked in the next line, then use the
inline="true" parameter in the "set" action:

<action application="set" data="myvar=false" inline="true"/>

Also, when debugging assignments, you may be tempted to go the sure way, the
"right" way, and put a printf, ahum, a "log" application, in dialplan, just before or
after checking the variable you previously set.

<extension name="check_var">
 <condition field="destination_number" expression="^2902$">
 <action application="set" data="var99=yes" inline="true"/>
 <action application="set" data="var100=yes"/>
 <action application="log" data="ERR var99=${var99} var100=${var100}"/>
 </condition>
 <condition field="${var99}" expression="yes">
 <action application="log" data="ERR COND var99 TRUE var99=${var99} var100=${var100}"/>
 <anti-action application="log" data="ERR COND var99 FALSE var99=${var99} var100=${var100}"/>
 </condition>
 <condition field="${var100}" expression="yes">
 <action application="log" data="ERR COND var100 TRUE var99=${var99} var100=${var100}"/>
 <anti-action application="log" data="ERR COND var100 FALSE var99=${var99} var100=${var100}"/>
 </condition>
</extension>

And, you fall right in the pit: again, the "log" application is executed after the
evaluation (traversal) phase. You need the "inline" attribute in the action "set" tag, to
be able to check later in dialplan the variable you set. Try it, note the "inline"

attribute, and see this mind-boggling output:

Variables
Variables are everywhere in FreeSWITCH configuration and in FreeSWITCH
working. Almost all things in FreeSWITCH happen because you set or change a
variable. Also, all things that happen set and change FreeSWITCH variables.

An important aspect of channel variables (and of FreeSWITCH variables by and
large) is that you use them not only to check the state of the system/call/user and so
on,but you also use variables to affect the behavior of FreeSWITCH! (see later this
chapter in "setting variables and call setup").

Here we will add and build on top of our previous expositions, passing in review
various kind of variables you can use in dialplan conditions.

Global variables
Some global variables are set (and possibly calculated) automatically by
FreeSWITCH at startup, like all the default directories in configuration, the IP
addresses in use, NAT related infos, and so on.

These are:

hostname
local_ip_v4
local_mask_v4
local_ip_v6
switch_serial
base_dir
recordings_dir
sound_prefix
sounds_dir
conf_dir
log_dir
run_dir
db_dir
mod_dir
htdocs_dir
script_dir
temp_dir
grammar_dir
certs_dir
storage_dir
cache_dir
core_uuid
zrtp_enabled
nat_public_addr
nat_private_addr
nat_type

Other global variables are set by the XML configuration pre-processor, and are
usually found in /usr/local/freeswitch/conf/vars.xml. (see "pre-processor variables"
in Chapter 3, Test Driving the Example Configuration).

All global variables can be referenced everywhere in configuration (so, even in
dialplan), and are used often to set defaults for modules.

You can reference global variables in dialplan (and elsewhere) by the construct
$${globalvar} (note the double dollar sign). Also, you can check their value by using
the "eval" command from the FreeSWITCH console:

You can also set and get global variables using the APIs (commands) global_setvar
and global_getvar:

In dialplan, you can use them in expressions and in data (and everywhere else):

<extension name="check_global">
 <condition field="destination_number" expression="^2906$">
 <action application="set" data="var101=lab.opentelecomsolutions.com" inline="true"/>
 </condition>
 <condition field="${var101}" expression="$${domain_name}">
 <action application="log" data="ERR YES, var101 is $${domain_name}"/>
 <anti-action application="log" data="ERR NOPE, var101 is NOT $${domain_name}"/>
 </condition>
</extension>

Time of Day, Day of Week, Holidays
All conditions related to time at large can be expressed directly, with a specific
syntax that checks the variable itself (no ${} construct here). You can combine more
than one of them in the same condition, and use ranges:

<conditionwday="6"hour="8-12">

The available "time" variables are:

year Calendar year, 0-9999
yday Day of year, 1-366
mon Month, 1-12 (Jan = 1, etc.)
mday Day of month, 1-31
week Week of year, 1-53
mweek Week of month, 1-6
wday Day of week, 1-7 (Sun = 1, Mon = 2, etc.) or "sun", "mon", "tue", etc.
hour Hour, 0-23
minute Minute (of the hour), 0-59
minute-of-day Minute of the day, (1-1440) (midnight = 1, 1am = 60, noon =
720, etc.)
time-of-day Time range formatted: hh:mm[:ss]-hh:mm[:ss] (seconds optional)
Example: "08:00-17:00"
date-time Date/time range formatted: YYYY-MM-DD hh:mm[:ss]~YYYY-
MM-DD hh:mm[:ss] (seconds optional, note tilde between dates) Example:
2010-10-01 00:00:01~2010-10-15 23:59:59

The following extensions are adapted from the demo configuration dialplan.

Please note the added inline="true", as you need it if you want to test the variable
${open} in "its_open_or_not" last example's extension.

Also, be aware of a common error (at least: it got me, so it MUST be common):
when you check for, let's say, hour="9-18" the condition evaluates to true starting
from 09:00 up to 18:59. It evaluates the numeric value of the current hour. Ta-daaa:
I blindly thought it would be 09:00 to 18:00. Don't ask me why.

<extension name="tod_example" continue="true" >

 <condition wday="2-6" hour="9-18">
 <action application="set" data="open=true"/>
 </condition>
 </extension>

 <extension name="holiday_example" continue="true">
 <condition mday="1" mon="1">
 <!-- new year's day -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition wday="2" mweek="3" mon="1">
 <!-- martin luther king day is the 3rd monday in january -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition wday="2" mweek="3" mon="2">
 <!-- president's day is the 3rd monday in february -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition wday="2" mon="5" mday="25-31">
 <!-- memorial day is the last monday in may (the only monday between the 25th and the 31st) -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition mday="4" mon="7">
 <!-- independence day -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition wday="2" mday="1-7" mon="9">
 <!-- labor day is the 1st monday in september (the only monday between the 1st and the 7th) -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition wday="2" mweek="2" mon="10">
 <!-- columbus day is the 2nd monday in october -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition mday="11" mon="11">
 <!-- veteran's day -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition wday="5-6" mweek="4" mon="11">
 <!-- thanksgiving is the 4th thursday in november and usually there's an extension for black friday -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 <condition mday="25" mon="12">
 <!-- Christmas -->
 <action application="set" data="open=false" inline="true"/>
 </condition>
 </extension>

<extension name="is_open_or_not">
 <condition field="destination_number" expression="^2904$"/>
 <condition field="${open}" expression="true">
 <action application="log" data="ERR YES, WE'RE OPEN FOR BUSINESS"/>
 <anti-action application="log" data="ERR GET A LIFE, DUDE, WE'RE CLOSED"/>
 </condition>
</extension>

Channel Variables
For an introduction to channel variables, please see the section "Channel Variables"
in Chapter 6, XML Dialplan .

There are various pages in official documentation about channel variables, and the
one where we are trying to centralize all info is:

https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables

Below is a list of some of them, grouped "thematically" for your future reference (for
details please search https://freeswitch.org/confluence).

Also, please note that if you need a variable (an information on some aspect of the
channel, call, system, user, or a way to tweak a parameter) is almost certain that it
exists: if the information or parameter exists, it is probably available as a variable.
Search our documentation site, both for the specific variable and for the possibly
related modules, search the mailing list archives, google for it, or ask the community
(mailing list, IRC, HipChat, etc).

CDR related
process_cdr
accountcode
hold_events
hangup_complete_with_xml
skip_cdr_causes
transfer_to

Hangup Causes
bridge_hangup_cause
disable_q850_reason
hangup_cause
hangup_cause_q850
sip_hangup_disposition
proto_specific_hangup_cause
last_bridge_hangup_cause
last_bridge_proto_specific_hangup_cause

DTMF Related
pass_rfc2833
dtmf_type
drop_dtmf
drop_dtmf_masking_digits

https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables
https://freeswitch.org/confluence

drop_dtmf_masking_file
Media Handling

monitor_early_media_fail
monitor_early_media_ring

Timeout Related
call_timeout
leg_timeout
originate_continue_on_timeout
park_timeout

Music On Hold Related
hold_music
temp_hold_music

Locale Related
default_language
timezone
tod_tz_offset

Bridge Related
api_after_bridge
auto_hunt
bridge_early_media
bridge_filter_dtmf
bridge_terminate_key
continue_on_fail
transfer_on_fail
enable_file_write_buffering
failure_causes
force_transfer_context
force_transfer_dialplan
hangup_after_bridge
hold_hangup_xfer_exten
last_bridge_to
loopback_bowout_on_execute
loopback_export
outbound_redirect_fatal
originate_timeout
park_after_bridge
signal_bond
no_throttle_limits
rtp_jitter_buffer_during_bridge
uuid_bridge_continue_on_cancel

Conference Related

conference_auto_outcall_announce
conference_auto_outcall_caller_id_name
conference_auto_outcall_caller_id_number
conference_auto_outcall_flags
conference_auto_outcall_prefix
conference_auto_outcall_timeout
conference_auto_outcall_maxwait
conference_controls
conference_enter_sound
conference_last_matching_digits
last_transferred_conference
conference_member_id
conference_uuid
hangup_after_conference

Code Execution Related
api_hangup_hook
bridge_pre_execute_aleg_app
bridge_pre_execute_aleg_data
bridge_pre_execute_bleg_app
bridge_pre_execute_bleg_data
exec_after_bridge_app
exec_after_bridge_arg
origination_nested_vars
The execute_on family
The api_on family
failed_xml_cdr_prefix
fail_on_single_reject
intercept_unbridged_only
intercept_unanswered_only
session_in_hangup_hook

Caller ID Related
caller_id_name
caller_id_number
effective_caller_id_name
effective_caller_id_number
sip_cid_type
effective_sip_cid_in_1xx

Callee ID Related
initial_callee_id_name
origination_callee_id_name
origination_callee_id_number

Call Recording Related
Audio File Metadata
record_fill_cng
RECORD_HANGUP_ON_ERROR
RECORD_DISCARDED
record_post_process_exec_api
record_post_process_exec_app
record_restart_limit_on_dtmf
record_sample_rate
record_waste_resources
recording_follow_transfer
Example

Codec Related
absolute_codec_string
codec_string
inherit_codec
media_mix_inbound_outbound_codecs
read_codec
write_codec
passthru_ptime_mismatch
sip_renegotiate_codec_on_reinvite
conference_enforce_security
suppress-cng

IVR related
ivr_menu_terminator
detect_speech_result

SIP related variables
rtp_disable_hold
sip_acl_authed_by
sip_acl_token
sip_copy_multipart
sip_invite_params
sip_invite_domain
sip_from_display
sip_invite_from_params
sip_invite_to_params
sip_invite_contact_params
sip_invite_tel_params
sip_network_destination
sip_auth_username
sip_auth_password

sip_auto_simplify
sip_callee_id_name
rtp_force_audio_fmtp
sip_invite_req_uri
sip_invite_record_route
sip_invite_route_uri
sip_invite_full_from
sip_invite_full_to
sip_handle_full_from
sip_handle_full_to
sip_force_full_from
sip_force_full_to
sip_recover_contact
sip_recover_via
sip_invite_from_uri
sip_invite_to_uri
sip_ignore_reinvites
sip_has_crypto
rtp_sdes_suites
rtp_secure_media
rtp_secure_media _inbound
rtp_secure_media _outbound
rtp_secure_media_suites
sip_wait_for_aleg_ack
timer_name
ignore_display_updates
deny_refer_requests

SDP Manipulation
rtp_append_audio_sdp
sdp_m_per_ptime
switch_r_sdp
switch_l_sdp
switch_m_sdp
verbose_sdp
sip_local_sdp_str
sip_recovery_break_rfc
sip_mirror_remote_audio_codec_payload
sip_enable_soa
sdp_secure_savp_only

FIFO related variables
fifo_bridged

fifo_caller_consumer_import
fifo_consumer_caller_import
fifo_manual_bridged
fifo_position
fifo_role
transfer_after_bridge

Playback related variables
playback_terminators
sound_prefix
playback_terminator_used
playback_ms
playback_samples
playback_last_offset_pos
playback_sleep_val
playback_delimiter
sleep_eat_digits
playback_timeout_sec

Originate related variables
execute_on_originate
leg_delay_start
originate_disposition
originate_retries
originate_retry_sleep_ms
originate_timeout
originating_leg_uuid
origination_channel_name
origination_caller_id_name
origination_caller_id_number
origination_cancel_key
origination_privacy
origination_uuid
originator
originator_codec

RTP/media related variables
bypass_media
bypass_media_after_bridge
bypass_keep_codec
proxy_media
rtp_autoflush
rtp_autoflush_during_bridge
disable_rtp_auto_adjust

progress_timeout
bridge_answer_timeout
ignore_early_media
ringback
instant_ringback
transfer_ringback
rtp_disable_hold
rtp_negotiate_near_match

RTCP Related
rtcp_packet_count
rtcp_octet_count
N/Artcp_audio_interval_msec
rtcp_mux
rtp_assume_rtcp

Camp-on related variables
campon
campon_retries
campon_timeout
campon_sleep
campon_fallback_exten
campon_fallback_dialplan
campon_fallback_context
campon_hold_music
campon_stop_key
campon_announce_sound

Answer confirmation variables
group_confirm_file
group_confirm_key
group_confirm_cancel_timeout

Voicemail Related Variables
voicemail_alternate_greet_id
voicemail_greeting_number
vm_message_ext
vm_cc
skip_greeting
skip_instructions
voicemail_authorized

Channel Variables and Field shortcuts
Some (not all!) channel variables can be used in "field" with or without the ${}
construct.

username Directory User who has originated this call
dialplan Which kind of dialplan is in use, almost always "XML"
caller_id_name
caller_id_number
callee_id_name
callee_id_number
network_addr address from which this call has been originated
ani Automatic Number Identification (actual caller number)
aniii Automatic Number Identification 2 (actual caller number version 2)
rdnis Redirected Dialed Number Information Service, previous
destination_number of a transferred call
destination_number
source what module was used for the call, e.g. for a SIP call, mod_sofia
uuid Universal Unique Identifier that denotes this call
context which context inside dialplan

<extension name="check_sip" continue="true">
 <condition field="source" expression="mod_sofia">
 <action application="log" data="ERR YES, THIS CALL IS
A SIP CALL"/>
 <anti-action application="log" data="ERR NOPE, NOT A
SIP CALL"/>
 </condition>
 </extension>

Channel Variables and Caller Profile
fields
Those are variables that are set when the call is authenticated, typically when is
originated by a registered phone. Some of the Caller Profile fields are filled by the
values coming from the User Directory. Please check Chapter 4, User Directory, SIP,
and Verto.

You set a variable in User Directory:

<user id="1011">
 <variables>
 <variable name="myvariable" value="1234"/>
 </variables></user>

And then you use it in dialplan:

 <extension name="check_caller_profile" continue="true">
 <condition field="${myvariable}" expression="1234">
 <action application="log" data="ERR myvariable exists
and is 1234"/>
 <anti-action application="log" data="ERR myvariable
has NOT been set or is NOT 1234"/>
 </condition>
 </extension>

Channel Variables and call setup
An important aspect of channel variables (and of FreeSWITCH variables by and
large) is that you use them not only to check the state of the system/call/user and so
on, but you also use variables to affect the behavior of FreeSWITCH!

Most of what FreeSWITCH will do with a call is set by its configuration, and can
be overridden at will on a call by call basis.

Let's see the most basic characteristic of a SIP or Verto call: which codec
FreeSWITCH will propose to a remote peer.

You set a default list in the /usr/local/freeswitch/conf/vars.xml file line:

<X-PRE-PROCESS cmd="set" data="outbound_codec_prefs=OPUS,G722,PCMU,PCMA,VP8"/>

This line will be used by pre-processor to set the global variable
$${outbound_codec_prefs}, which will then be used by SIP and Verto profiles when
negotiating media with remote party (callee) during the setup of FreeSWITCH
originated calls.

So, if you use a simple dialplan extension, that list will be used verbatim:

 <extension name="bridge_test_01">
 <condition field="destination_number" expression="^2908$">
 <action application="bridge"
 data="sofia/internal/888@conference.freeswitch.org"/>
 </condition>
 </extension>

Extension "bridge_test_01" will use the default outbound codec preferences list set
in vars.xml.

setting channel variables in dialstrings
You can alter this behavior by setting variables in dialstring, using the construct "
{variable=value,variable01=value02}dialstring".

In case you want to override outbound_codec_prefs you need to set the "codec-
string" variable on the dialstring (note the usage of single quotes to escape value
strings containing commas. Comma would delimit variables-values pairs):

 <extension name="bridge_test_02">
 <condition field="destination_number" expression="^2908$">
 <action application="bridge" data="{codec_string='PCMA,PCMU,VP8'}user/1011"/>
 </condition>
 </extension>

If instead of changing the preferences list, you want to force FreeSWITCH to use
exactly a codec list, and nothing else, you set the "absolute-codec-string":

<extension name="bridge_test_02">
 <condition field="destination_number" expression="^2909$">
 <action application="bridge" data="{absolute_codec_string='PCMA,PCMU,VP8'}user/1011"/>
 </condition>
 </extension>

You can use the same technique from the FreeSWITCH console command line:

bgapi originate {absolute_codec_string='PCMA,PCMU,VP8'}user/1011 5000

In the following example, we first set the codec to PCMA in dialstring, and the call
succeeds. Then we try again, setting the codec to something obviously not compatible
with callee, and the call fails.

setting channel variables on B-legs:
export and nolocal
You may want to set or override variables in dialplan, earlier, instead of resorting to
last moment dialstring.

When you want to set a variable in both the current (A-leg) call and any future
originated B-legs (typically originated later with one or more bridge applications)
you "export" a variable (note: no single quotes to escape the variable's value
string):

 <extension name="bridge_test_03">
 <condition field="destination_number" expression="^2910$">
 <action application="export" data="absolute_codec_string=PCMA,PCMU"/>
 <action application="bridge" data="user/1011"/>
 </condition>
 </extension>

In this specific case, we made a subtle impropriety: we exported the variable to
both A-leg and any future B-legs. But this has no effect on the current A-leg,
because A-leg has already been established (e.g. there will not be codec negotiation
between FreeSWITCH and the caller. Maybe this can affect future re-invites, and
maybe we do not want this to happen).

So, this extension would be better written in a way that exports the variable only to
future B-legs, using the nolocal parameter:

<extension name="bridge_test_04">
 <condition field="destination_number" expression="^2911$">
 <action application="export" data="nolocal:absolute_codec_string=PCMA,PCMU"/>
 <action application="bridge" data="user/1011"/>
 </condition>
 </extension>

exporting variables to SIP custom (X-)
Headers
Sometimes you need to pass variables to other SIP entities in your own or in remote
networks. This is typically sought for accounting or authorization or operational
purposes.

You can add arbitrary headers to FreeSWITCH generated SIP messages by setting or
exporting channel variables which names begin with "sip_h_". If you are setting
nonstandard SIP headers (you better not use standard headers) you can follow the
popular convention of naming the header "X-Something", so your variable would be
"sip_h_X-Something"

<extension name="bridge_test_05">
 <condition field="destination_number" expression="^2912$">
 <action application="set" data="sip_h_X-AccountCode=4321"/>
 <action application="bridge" data="sofia/gateway/gw03/2125551212"/>
 </condition>
 </extension>

This extension will originate a B-leg. This new INVITE SIP message will contain an
header like:

X-AccountCode=4321

The gateway will then be able to read the custom header and act accordingly. SIP
proxies have their own functions for reading a custom X-header, while other
FreeSWITCHes will find it in the channel variable ${sip_h_X-AccountCode}.

API commands from Dialplan
All commands (APIs) you can execute from cli in the FreeSWITCH console are also
available to be used in dialplan.

Many API commands are provided by mod_commands (search for it in http://freeswitch.or
g/confluence), but usually all modules add their own API commands you can execute
from the console command line. From the console, type "help" for a quick overview.

The general form to execute an API command from dialplan is:

${api_command(argument01 argument02)}

You may use the "set" action, and assign to a channel variable (that you maybe will
not use) the string returned from the console command line.

API commands' arguments are between parenthesis and separated by spaces; if there
are no arguments, use empty parenthesis.

The third action line of this example extension will try to unload mod_verto from
FreeSWITCH, and the fifth action line will give us the SIP dialstring to call the caller
(if the call was originated by a registered phone):

<extension name="API">
 <condition field="destination_number" expression="^2913$">
 <action application="log" data="ERR ${status()}"/>
 <action application="log" data="ERR ${sofia(status profile internal reg)}"/>
 <action application="set" data="api_result=${unload(mod_verto)}"/>
 <action application="log" data="ERR ${module_exists(mod_verto)}"/>
 <action application="log" data="ERR ${sofia_contact(${username}@$${domain_name})}"/>
 </condition>
</extension>

http://freeswitch.org/confluence

FreeSWITCH string interpreter
functions
There are couple of constructs we can use to enhance the expressive power of
FreeSWITCH configuration. They are borrowed from programming languages, and
are particularly handy when, for the sake of efficiency, we don't want to use a
scripting language like Lua or Perl.

cond, C-like "expr ? truevalue :
falsevalue"
The "cond" construct will be substituted by its truevalue if expr is evaluated to
true, or by its falsevalue in the other case.

The general format of the cond function is (note the spaces around question mark
and around colon):

${cond(<expr> ? <truevalue> : <falsevalue>)}

Let's see an example extension using "cond" construct:

<extension name="COND">
 <condition field="destination_number" expression="^2914$">
 <action application="log" data="ERR ${cond(${username} == 1011 ? YESSSS : NOOOOT)}"/>
 </condition>
</extension>

Calling 2914 from a phone registered as user 1011 will output:

Comparison operators are:

== equality
!= not equal
> greater than
>= greater than or equal to
< less than
<= less than or equal to

You can compare strings with strings and numbers with numbers, but if you compare
a string to a number, they will be compared as strlen(string) and the number.

variables' substrings
You can select a portion of a variable's value, (just like a substr function in many
programming languages) by wrapping the variable in ${var:offset:length} tags. The
arguments are:

var: A string variable. It can be a literal string or a variable such as
${caller_id}.
offset: The location to start copying data. The value 0 indicates the first
character.
length: How many characters to select. It is optional and if omitted, the
remainder of the string is copied.

Some examples of the arguments are as follows:

set data="varname=1234567890"
${varname:offset:length}
${varname:0:1} // 1
${varname:1} // 234567890
${varname:-4} // 7890
${varname:-4:2} // 78
${varname:4:2} // 56

An extension showing a variable and its substring:

<extension name="SUBSTR">
 <condition field="destination_number" expression="^2915$">
 <action application="log" data="ERR ${username}"/>
 <action application="log" data="ERR ${username:1:2}"/>
 </condition>
</extension>

Calling 2915 from a phone registered as user 1011 will output:

db and hash: simple key/value stores
You can arbitrarily insert, delete, select, and update values from the internal
FreeSWITCH database.

db will work on persistent tables, be they SQLite files in /usr/local/freeswitch/db, or
ODBC or PGSQL remote tables.

hash will work instead on memory resident simple hash tables, extremely fast and
efficient, not persistent after a FreeSWITCH restart.

The general format for database commands is:

 ${db(command/table/key/value)}

or

 ${hash(command/table/key/value)}

And you have also the corresponding dialplan application "db" and "hash".

Commands can be insert, select, or delete, followed by the table, followed by a key
and (when appropriate) a value.

<action application="hash" data="insert/${domain_name}-last_dial/${caller_id_number}/${destination_number}"/>

This action (taken from "global" extension in demo dialplan) will insert into a table
named from the SIP domain in use the caller_id that originated the call, and the
destination number. This can easily be used afterwards to build a "redial" extension.

You would get at the last dialed number by the caller with an extension like this:

<extension name="LASTDIALED">
 <condition field="destination_number" expression="^2916$">
 <action application="log" data="ERR ${hash(select/${domain_name}-last_dial/${caller_id_number})}"/>
 </condition>
</extension>

"Hotkeys", Listening, Barging
Nobody is counting the number of applications you can use in Dialplan, but I would
bet there are hundreds. Anyway, I can count: "1, 2, 3, 4, 5, MANY". OK, there are
MANY of them.

Most dialplan applications are provided by the aptly named mod_dptools (Dialplan
Tools), but almost all other FreeSWITCH modules add their own applications to the
heap of what is available in dialplan.

Let's have a quick look at a couple of dialplan applications that allow for going
beyond the simple calling and bridging.

bind_meta_*, DTMFs to actions
outside menus
bind_meta_app: This command binds an application to the specified call leg(s).
During a bridged call, the DTMF sequence on the bound call leg will trigger the
execution of the application. The call leg that is not bound will not hear the DTMF
sequence being dialed. You can only bind a single digit, and the binding is usually
proceeded with a * key press. As an example, let's say you want to set *2 to begin a
call recording.

When the calling party presses *2, the recording will begin:

<action application="bind_meta_app" data="2 a s
record_session::recording.wav"/>
<action application="bridge"
data="sofia/sipprovider/+14158867900">

Note that unless otherwise specified, bind_meta_app will use * as the "meta key".
Set the bind_meta_key channel variable to a different value to modify this behavior.
For example, to use # instead of * you can do this:

<action application="set" data="bind_meta_key=#"/>

Notice the format of the bind_meta_app parameters:

<action application="bind_meta_app" data="KEY LISTEN_TO FLAGS APPLICATION[::PARAMETERS]"/>

Explanation of parameters

KEY is the button you want to respond to after the * button is pressed. If you
wanted to respond to *1, you would put 1 in place of KEY. You are limited to a
single digit in the range 0-9 while * or # will be translated to 0.
LISTEN_TO specifies which call leg(s) to listen to for digits. Acceptable
parameters are '''a''', '''b''' or '''ab'''.
FLAGS modifies the behavior. The following flags are available:

a - Respond on A leg
b - Respond on B leg
- Respond on opposite leg
s - Respond on same leg
i - Execute inline (see below)
1 - Unbind this meta_app after it is used one time

APPLICATION specifies the application to execute.
PARAMETERS specify the arguments to provide to the APPLICATION. You

must put :: after the APPLICATION for these arguments to be parsed properly.

Once bound to a call leg, the application binding will persist for the lifetime of the
call leg.

eavesdrop (call barge)
This dialplan application allows for listening and interacting with other
channels/calls.

It's a very flexible application; search on http://freeswitch.org/confluence for all the details
and features.

The format of invocation is:

eavesdrop UUID|all

A couple of example dialplan actions would be:

<action application="eavesdrop" data="${db(select/spymap/$1)}"/>
<action application="eavesdrop" data"all"/>

The first one, adapted from demo dialplan, assumes that elsewhere we inserted into a
persistent table (see "db and hash" before in this chapter) the UUID of the ongoing
call originated by the user we get in the "$1" regular expression register. We then get
the UUID value from the db table, and execute eavesdrop on it.

The second one will connect in turn to all ongoing calls.

http://freeswitch.org/confluence

eavesdrop DTMF commands
2 to speak with the uuid
1 to speak with the other half
3 to engage a three way
0 to restore eavesdrop.
* to next channel.

If we are listening to an UUID (and not to "all" channels) then "*" will terminate the
eavesdrop.

Dialplan Cookbook
We present here a few scenarios that you may need to refer to from time-to-time
because they are relatively common. The examples presented in this section are in the
mold of the traditional cookbook full of recipes for the reader to try. Feel free to use
and modify these recipes in your custom Dialplans.

Match by IP address and call a number
In the following example, the particular extension will be selected only if the IP
address of the calling endpoint is 192.168.1.1. In the second condition, the dialed
number is extracted in variable $1 and put in the data of the bridge application, in
order to dial out to IP address 192.168.2.2.

<extension name="Test1">
 <condition field="network_addr"
 expression="^192\.168\.1\.1$"/>
 <condition field="destination_number" expression="^(\d+)$">
 <action application="bridge"
 data="sofia/profilename/$1@192.168.2.2"/>
 </condition>
</extension>

The first condition field is terminated by a slash. The last condition field that
contains the action tag is terminated by a regular </condition> tag. Also, note that the
preceding example is not the same as this example:

<extension name="Test1Wrong">
 <condition field="destination_number" expression="^(\d+)$"/>
 <condition field="network_addr"
 expression="^192\.168\.1\.1$">
 <action application="bridge"
 data="sofia/profilename/$1@192.168.2.2"/>
 </condition>
</extension>

The Test1Wrong example will not route the call properly because the variable $1 will
not have any value, since the destination number was matched in a different
condition, field.

You can also solve the Test1Wrong example by setting a variable in the first condition
which you then use inside the second condition's action:

<extension name="Test1.2">
 <condition field="destination_number" expression="^(\d+)$">
 <action application="set" data="dialed_number=$1"/>
 </condition>
 <condition field="network_addr"
 expression="^192\.168\.1\.1$">
 <action application="bridge"
 data="sofia/profile/${dialed_number}@192.168.2.2"/>
 </condition>
</extension>

You cannot use a variable set inside an extension for further conditions/matches as
the extension is evaluated when the action is called.

If you need to do different actions based on a variable set inside an extension, you
need to either use execute_extension to transfer the call for the variable to be set, or use

inline processing. (See the section Inline execution earlier in this chapter.)

Match an IP address and Caller ID
In this example, we need to match a called number beginning with the prefix 1 and
match the incoming IP address at the same time.

<extension name="Test2">
 <condition field="network_addr"
 expression="^192\.168\.1\.1$"/>
 <condition field="destination_number" expression="^1(\d+)$">
 <action application="bridge"
 data="sofia/profilename/$0@192.168.2.2"/>
 </condition>
</extension>

Here, although we match with the rule ^1(\d+)$, we don't use the variable $1, which
would contain only the rest of the dialed number with the leading 1 stripped off.
Instead, we use the variable $0 that contains the original destination number.

Match a number and strip digits
In this example we need to match a called number beginning with 00, but we also
need to strip the leading digits. Assuming that FreeSWITCH receives the number
00123456789 and we need to strip the leading 00 digits, then we can use the following
extension:

<extension name="Test3.1">
 <condition field="destination_number"
 expression="^00(\d+)$">
 <action application="bridge"
 data="sofia/profilename/$1@192.168.2.2"/>
 </condition>
</extension>

On the other hand, if you anticipate receiving non-digits, or you want to match on
more than just digits, use .+ instead of \d+, because \d+ matches numeric digits only,
whereas a .+ will match all characters from the current position to the end of the
string:

<extension name="Test3.2">
 <condition field="destination_number" expression="^00(.+)$">
 <action application="bridge"
 data="sofia/profilename/$1@192.168.2.2"/>
 </condition>
</extension>

Match a number, strip digits, and add a
prefix
In this example we need to strip the leading digits as shown, but we also need to
place a new prefix before the called number. Assuming that FreeSWITCH receives
the number 00123456789 and we need to replace the 00 with 011, we can use the
following extension:

<extension name="Test4">
 <condition field="destination_number"
 expression="^00(\d+)$">
 <action application="bridge"
 data="sofia/profilename/011$1@x.x.x.x"/>
 </condition>
</extension>

Call a registered device
This example shows how to bridge to devices that have registered with your
FreeSWITCH system. In this example we assume that you have set up a Sofia profile
called local_profile and your phones are registering with the domain example.com. Note
the % instead of @ in the dial string:

<extension name="internal">
 <condition field="source" expression="mod_sofia"/>
 <condition field="destination_number" expression="^(4\d+)$">
 <action application="bridge"
 data="sofia/local_profile/$0%example.com"/>
 </condition>
</extension>

The use of % instead of @ is a FreeSWITCH-specific feature. Using the form user%domain
tells FreeSWITCH that a user is registered with domain, and that domain is being
serviced by the FreeSWITCH directory.

Try party A, then party B
The following example shows how it is possible to call another action if the first
action fails.

If the first action is successful, the call is bridged to 1111@example1.company.com and will
exist until one of the parties hangs up. After this, no other processing will be done
because the caller's channel is closed. (In other words, 1111@example2.company.com is not
called.)

If the initial call to 1111@example1.company.com was not successful, the channel will not be
closed and the second action will be called.

<extension name="find_me">
 <condition field="destination_number" expression="^1111$">
 <action application="set"
 data="hangup_after_bridge=true"/>
 <action application="set" data="continue_on_fail=true"/>
 <action application="bridge"
 data="sofia/local_profile/1111@example1.company.com"/>
 <action application="bridge"
 data="sofia/local_profile/1111@example2.company.com"/>
 </condition>
</extension>

Route DIDs to extensions
To route incoming calls that come in to a certain DID via the context public to a fixed
extension in the context inhouse, do something like the following:

<context name="public">
 <extension name="test_did">
 <condition field="destination_number"
 expression="^\d{6}(\d{4})$">
 <action application="transfer" data="$1 XML inhouse"/>
 </condition>
 </extension>
</context>

This will capture only the last four digits of a ten-digit number and transfer the caller
to that number via the inhouse context. Note the parentheses around \d{4} that allow us
to capture only the last four digits.

Alternate outbound gateways
In this example we send ten-digit outbound calls from OfficeA to gateway1 and from
OfficeB to gateway2. This assumes OfficeA and OfficeB are both using the same
FreeSWITCH box but need different routing for outbound calls. It assumes both
offices have 4-digit extensions, and that OfficeA's extensions start with 2 and OfficeB's
extensions start with 3.

<extension name="officeA_outbound">
 <condition field="caller_id_number"
 expression="^2\d{3}$"/>
 <condition field="destination_number"
 expression="^(\d{10})$">
 <action application="set"
 data="effective_caller_id_number=8001231234"/>
 <action application="set"
 data="effective_caller_id_name=Office A"/>
 <action application="bridge"
 data="sofia/gateway/myswitch.com/$1"/>
 </condition>
</extension>
<extension name="officeB_outbound">
 <condition field="caller_id_number"
 expression="^3\d{3}$"/>
 <condition field="destination_number"
 expression="^(\d{10})$">
 <action application="set"
 data="effective_caller_id_number=8001231235"/>
 <action application="set"
 data="effective_caller_id_name=Office B"/>
 <action application="bridge"
 data="sofia/gateway/otherswitch.com/$1"/>
 </condition>
</extension>

Multiple endpoints with enterprise
originate
Consider this example: a customer wants to know if they can route a call to two
different people. Person number one (Alice) prefers that her desk phone ring
first, and then her mobile phone. Person number two (Bob) prefers that his desk phone
and his mobile phone ring simultaneously. Whoever answers first-Alice or Bob-will
take the call and all the other outbound calls will stop ringing.

This complicated scenario requires the use of FreeSWITCH's enterprise originate.
The basic idea of an enterprise originate is that there are individual originates that
are connected in a larger "enterprise". In our example, Alice's phones might be
dialed like this:

<action application="bridge"
data="[leg_timeout=10]user/Alice|
[leg_timeout=20]sofia/gateway/my_gw/${alice_mobile}"/>

And for Bob:

<action application="bridge"
data="[leg_timeout=10]user/Bob|
[leg_timeout=20]sofia/gateway/my_gw/${bob_mobile}"/>

Each of these individual bridge attempts would work for calling either Alice or Bob,
but not both at the same time. To accomplish this, put both of these into a single bridge
action and separate them with the special :_: sequence. Here is an example:

<action application="bridge"
data="<ignore_early_media=true>[leg_timeout=10]user/Alice|
[leg_timeout=20]sofia/gateway/my_gw/${alice_mobile}:_:
[leg_timeout=10]user/Bob|
[leg_timeout=20]sofia/gateway/my_gw/${bob_mobile}"/>

In this case, when the inbound leg hits this bridge app, FreeSWITCH will initiate two
separate "originates"-one for reaching Alice and the other for reaching Bob. The effect
here is that FreeSWITCH tries to reach Alice, by calling her desk phone and then her
mobile while at the same time calling Bob at his desk phone and his mobile phone. If
anyone answers then the whole "enterprise" stops and the call is connected to the
endpoint that answered.

Note that we are forced to use ignore_early_media=true, because we are creating so many
call legs. There is no way to pick just one source of early media (ringing) and use it.
Be sure to set the ringback or transfer_ringback variables if you need to supply some
kind of ringing signal to the calling party.

Summary
In this chapter we delved very deeply into the operation of the FreeSWITCH
Dialplan. Building upon the foundation laid in Chapter 6, XML Dialplan, we discussed
many advanced Dialplan concepts:

How Dialplan parsing works
Using global variables and channel variables
Advanced use of regular expressions
Various advanced routing concepts

The Dialplan system in FreeSWITCH is one of the most important concepts you can
learn. The power of FreeSWITCH is truly unleashed within the Dialplan system
itself, and understanding the complexities of using various functions within
FreeSWITCH is key to ensure that the FreeSWITCH performs exactly the way you
want.

In the next chapter, we will lay the foundation for doing very powerful FreeSWITCH
configurations that do not rely solely on the static XML files.

Dialplan, Directory, and ALL via
XML_CURL and Scripts
The same XML Dialplan and User Directory (and actually all of the FreeSWITCH
configuration) we saw in previous chapters can be served dynamically to
FreeSWITCH, changing in real time, instead of being read from the filesystem.

Also, this is not an all or nothing choice: you can serve dynamically just the User
Directory, or the dialplan, or the module configurations. And you can have fall-backs
on filesystem that are read when the dynamic configuration is not covering that
specific looked for item (as in "404 File not found").

You can serve that XML information via a web server to mod_xml_curl, or you can
use scripts in supported languages (Lua, Perl, and so on). Scripts can do whatever to
build the XML snippet to be returned to FreeSWITCH (query a database, use a
template, and so on).

Each time FreeSWITCH needs to know something (a user configuration, or a dialplan
extension) it will use the script (or mod_xml_curl) to retrieve the XML snippet with
the relevant info.

This way, for example, you can have a cluster of FreeSWITCHes all accessing the
same dynamic real time configuration.

Also, you can have that configuration, which determines FreeSWITCH behavior,
changing call per call responding to your business logic, and so on.

We'll see:

The logic behind mod_xml_curl
How to configure mod_xml_curl
How to set up a web server php script that mod_xml_curl will interrogate
How to use scripts to dynamically retrieve XML snippets

mod_xml_curl rationale
mod_xml_curl uses the curl library, the same library behind the curl executable utility
(https://curl.haxx.se/ great documentation!), to get a snippet of XML from a webserver in
response to an internal FreeSWITCH request.

In its base configuration FreeSWITCH at startup reads its XML configuration from
filesystem. FreeSWITCH XML configuration is composed by a couple of XML files
that "include" many other XML files. The inclusion mechanism, and the inherent
structure in XML files, results in one very big XML tree to be built into
FreeSWITCH memory.

Each time FreeSWITCH needs to know something about its own configuration
(module parameters, dialplan, User Directory, and so on), FreeSWITCH uses its
internal XML tools to query the big in-memory XML tree. From each one of those
queries, that in a busy server can be thousands at a second, FreeSWITCH receive an
XML snippet response, containing the relevant data. The query/response is
immediate and extremely light, like a binary tree in RAM.

mod_xml_curl can be configured to answer some or all of those internal XML
queries by returning an XML snippet from a web server (local or remote).

Also, in case a first web server fails or does not contain the information,
mod_xml_curl can be configured to try a second and third web server and/or letting
FreeSWITCH fall back to read the XML from the local filesystem (like
mod_xml_curl was not there)."Nothing to be found in this mod_xml_curl. Move
along, read from filesystem":

https://curl.haxx.se/

mod_xml_curl configuration
Configuration of mod_xml_curl is where all modules' configurations are, in
/usr/local/freeswitch/conf/autoload_configs/xml_curl.conf.xml.

Its XML tree in its simplest form is like this:

<configuration name="xml_curl.conf" description="cURL XML Gateway">
<bindings>
<binding name="localhostweb">
<param name="gateway-url" value="http://127.0.0.1/xml_handler.php" bindings="directory"/>
</binding>
</bindings>
</configuration>

Let's see its most important tags:

configuration is the document container, and it specifies that this particular
XML configuration snippet is "xml_curl.conf" (mod_xml_curl will look for it
when loaded).

bindings contains all the "binding" tags.
binding each binding tag contains specifications about where and how
mod_xml_curl will look for to retrieve a class of XML settings.

gateway-url this is the only mandatory tag inside a binding tag.
Its value is the complete URL (protocol, server, port, resource)
that will be used by mod_xml_curl to retrieve the XML snippet.
It has an attribute bindings that specifies which class of XML
snippets will be served by this gateway.

Inside each binding tag you can have one only gateway-url.

Each gateway-url can have its bindings attribute set to one or more (separated by
pipe sign "|") of those classes of XML snippets:

directory: the User Directory, registered users authentication and
parameters/variables
dialplan: contexts and extensions
phrases: languages and XML IVR constructs for the "say" API
configuration: all that is not covered by the other three

It can be a little confusing, because the same terms keep appearing in singular and
plural quantities, as tag names and as attribute values. Be strong! You can do it!

Inside each binding tag you can have many optional tags that will further tell the curl

library how to retrieve the XML snippet (for example, GET/POST, SSL related
settings, password, timeout, and so on).

If you have more than one binding that has a gateway-url for the same class of
XML snippets, if the first fails, the second will be tried, and so on. This can be used
as "client side high availability" (obviously you can implement HA on the web
server side, with classical web load balancing techniques).

Ifallbinding for a class of XML snippets fail, for example the webservers are down
or timeout or the responses are invalid XML snippets, then the XML snippet will be
looked upon in "traditional" XML configuration on filesystem.

If a binding fails, an error is reported in console and logfile, so you know and can
fix it. Eg: failover works, but an error is reported.

If you do not want the error to be reported, but you want to silently fail over to
another binding or to filesystem (because this is the expected behavior, binding is
expected not to have all possible XML snippets), the webserver must return a "not
found" content (as opposed to nothing or empty or invalid), see the example in next
section "php/mysql setup for mod_xml_curl".

Let's see a couple more complex mod_xml_curl configurations, modified from our
confluence documentation:

<configuration name="xml_curl.conf" description="cURL XML Gateway">
<bindings>
<!-- Ask example1.com for a dialplan config, if we get a valid response then don't continue onto example2.com. However if we don't get a valid response, then continue onto example2.com -->
<binding name="dialplan">
<param name="gateway-url" value="http://example1.com:80/fsapi" bindings="dialplan"/>
</binding>

<!-- This will only get called if example1.com returns an invalid or not found response. If this gateway also fails to return a valid configuration, then FreeSWITCH will look for the static configuration file on disk -->
<binding name="dialplan backup">
<param name="gateway-url" value="http://example2.com:80/fsapi" bindings="dialplan"/>
</binding>

<!-- Ask example1.com for directory and phrases config, if not found in case of directory then revert to disk, in case of phrases then go to example2 -->
<binding name="example1">
<param name="gateway-url" value="http://example1:80/fsapi" bindings="directory|phrases"/>
</binding>

<!-- Ask example1.com for a configuration config, if not found then revert to disk -->
<binding name="configuration">
<param name="gateway-url" value="http://example1:80/fsapi" bindings="configuration"/>
</binding>

<!-- Ask example2.com for a phrases config, if not found then revert to disk -->
<binding name="example2">
<param name="gateway-url" value="http://example2:80/fsapi" bindings="phrases"/>
</binding>
</bindings>
</configuration>

Also, you want to check the comments in the example config file installed by demo

configuration:

<binding name="example">
<!-- Allow to bind on a particular IP for requests sent -->
<!--<param name="bind-local" value="$${local_ip_v4}" />-->
<!-- The url to a gateway cgi that can generate xml similar to
what's in this file only on-the-fly (leave it commented if you dont
need it) -->
<!-- one or more |-delim of configuration|directory|dialplan -->
<!-- <param name="gateway-url" value="http://www.freeswitch.org/gateway.xml" bindings="dialplan"/> -->
<!-- set this to provide authentication credentials to the server -->
<!--<param name="gateway-credentials" value="muser:mypass"/>-->
<!--<param name="auth-scheme" value="basic"/>-->

<!-- optional: this will enable the CA root certificate check by libcurl to
verify that the certificate was issued by a major Certificate Authority.
note: default value is disabled. only enable if you want this! -->
<!--<param name="enable-cacert-check" value="true"/>-->
<!-- optional: verify that the server is actually the one listed in the cert -->
<!-- <param name="enable-ssl-verifyhost" value="true"/> -->

<!-- optional: these options can be used to specify custom SSL certificates
to use for HTTPS communications. Either use both options or neither.
Specify your public key with 'ssl-cert-path' and the private key with
'ssl-key-path'. If your private key has a password, specify it with
'ssl-key-password'. -->
<!-- <param name="ssl-cert-path" value="$${certs_dir}/public_key.pem"/> -->
<!-- <param name="ssl-key-path" value="$${certs_dir}/private_key.pem"/> -->
<!-- <param name="ssl-key-password" value="MyPrivateKeyPassword"/> -->
<!-- optional timeout -->
<!-- <param name="timeout" value="10"/> -->

<!-- optional: use a custom CA certificate in PEM format to verify the peer
with. This is useful if you are acting as your own certificate authority.
note: only makes sense if used in combination with "enable-cacert-check." -->
<!-- <param name="ssl-cacert-file" value="$${certs_dir}/cacert.pem"/> -->

<!-- optional: specify the SSL version to force HTTPS to use. Valid options are
"SSLv3" and "TLSv1". Otherwise libcurl will auto-negotiate the version. -->
<!-- <param name="ssl-version" value="TLSv1"/> -->

<!-- optional: enables cookies and stores them in the specified file. -->
<!-- <param name="cookie-file" value="$${temp_dir}/cookie-mod_xml_curl.txt"/> -->

<!-- one or more of these imply you want to pick the exact variables that are transmitted -->
<!--<param name="enable-post-var" value="Unique-ID"/>-->
</binding>

mod_xml_curl: Caveats and Pitfalls
So, you get excited by the endless possibilities offered by mod_xml_curl and you
want to implement it yourself. Good!

But you want to take into account some things:

FreeSWITCH makes a lot of XML lookups. Really: a lot! A very big fast
whopping lot!
You want your webserver to be very fast in returning the XML snippets, in
failing, in timeouts, in all things: FreeSWITCH will wait for it
You want to set the timeout in each binding. In case of webserver not
responding or slow, FreeSWITCH will wait for it
Particularly for directory, FreeSWITCH will not initiate a new phone
registration until the previous has been completed or failed
You may want to allow for FreeSWITCH caching of XML snippets. Look in
mod_xml_curl confluence documentation for it
You may want to use PHP caching, memcached or similar systems
You want to cure all aspect of web security, both for denial of service, for
hackability of server side scripts, for exposition of your database, etc
You DO NOT want to have FreeSWITCH and database/webserver on the
same hardware machine. It's a no-no. Also having FreeSWITCH in a vm and
database/webserver in another vm on the same hardware is a no-no. If you
expect significant traffic, don't.

php/mysql setup for mod_xml_curl
I adapted all the following example setup, including database and PHP code, from the
book "Costruire centralini telefonici con FreeSWITCH", written by FreeSWITCH
Italian champion Christian Bergamaschi. Look it up on Amazon and elsewhere! (in
Amazon.IT you can even have it as printed paper book).

For testing, you can install webserver, php, and mysql on the same FreeSWITCH
machine. For production you want them to be on a separate hardware on the same
gigabit LAN.

In Debian 8 Jessie you do:

apt-get install mysql-server nginx php5-fpm php5-mysql

You'll be asked for a root password for mysql server, set it to something you
remember, you'll need it again.

Create and populate the Database
From the Linux root command line, type:

mysql -A -p

Then, from the mysql console:

create database freeswitch;
use freeswitch;
CREATE TABLE `extensions` (`userid` varchar(5) NOT NULL DEFAULT '', `password` varchar(30) NOT NULL DEFAULT '', `displayname` varchar(14) NOT NULL DEFAULT '', `vmpasswd` varchar(10) DEFAULT NULL, `accountcode` varchar(10) DEFAULT NULL, `outbound_caller_id_name` varchar(14) DEFAULT NULL, `outbound_caller_id_number` varchar(14) DEFAULT NULL);
insert into extensions (userid,password,displayname,vmpasswd,accountcode,outbound_caller_id_name,outbound_caller_id_number) values ("1000","12345","Giovanni Maruzzelli","12345","1000","OpenTelecom.IT","+393472665618"), ("1001","12345","Sara Sissi","12345","1001","OpenAdassi.IR","+12125551212"), ("1002","12345","Francesca Francesca","12345","1002","OpenSantuzza","+4433344422"), ("1003","12345","Tommaso Stella","12345","1003","OpenBoat.LUV","+9188877755");
select * from extensions;

Setup NGINX and xmlhandler.php
Edit /etc/nginx/sites-enabled/default and uncomment the lines needed to activate PHP
and php5-fpm, and then "service nginx restart" from the command line.

Create the file /var/www/html/xml_handler.php with the following content:

<?php
function not_found()
{
Header("Content-type: text/xml");
$xmlw = new XMLWriter();
$xmlw -> openMemory();
$xmlw -> setIndent(true);
$xmlw -> setIndentString('');
$xmlw -> startDocument('1.0', 'UTF-8', 'no');
$xmlw -> startElement('document');
$xmlw -> writeAttribute('type', 'freeswitch/xml');
$xmlw -> startElement('section');
$xmlw -> writeAttribute('name', 'result');
$xmlw -> startElement('result');
$xmlw -> writeAttribute('status', 'not found');
$xmlw -> endElement(); //end result
$xmlw -> endElement(); //end section
$xmlw -> endDocument(); //end document
echo $xmlw -> outputMemory();
return TRUE;
}

function directory()
{
global $_SERVER;
global $_POST;
connect to MySQL
$connect = mysql_connect("localhost", "root", "mysql_root_password");
mysql_select_db("freeswitch", $connect) or die(mysql_error());

Query
$query = "SELECT
userid,password,displayname,vmpasswd,accountcode,outbound_caller_id_name,outbound_caller_id_number from extensions where userid='" . $_POST['user'] . "'";
perform the query
$result = mysql_query($query, $connect) or die(mysql_error());
$num_rows = mysql_num_rows($result);

if($num_rows==0){
if no database row, fallback to filesystem, no FS error
not_found();
return TRUE;
}
Header("Content-type: text/xml");
$xmlw = new XMLWriter();
$xmlw -> openMemory();
$xmlw -> setIndent(true);
$xmlw -> setIndentString('');
$xmlw -> startDocument('1.0', 'UTF-8', 'no');
$xmlw -> startElement('document');
$xmlw -> writeAttribute('type', 'freeswitch/xml');
$xmlw -> startElement('section');
$xmlw -> writeAttribute('name', 'directory');
$xmlw -> startElement('domain');
$xmlw -> writeAttribute('name','$${domain}');
$xmlw -> startElement('params');
$xmlw -> startElement('param');
$xmlw -> writeAttribute('name', 'dial-string');

$xmlw -> writeAttribute('value', '{^^:sip_invite_domain=$
{dialed_domain}:presence_id=${dialed_user}@${dialed_domain}}$
{sofia_contact(*/${dialed_user}@${dialed_domain})}');
$xmlw -> endElement(); //end param
$xmlw -> endElement(); //end param
while($row = mysql_fetch_array($result, MYSQL_ASSOC)) {
$xmlw -> startElement('user');
$xmlw -> writeAttribute('id', $row['userid']);
// Params
$xmlw -> startElement('params');
$xmlw -> startElement('param');
$xmlw -> writeAttribute('name', 'password');
$xmlw -> writeAttribute('value', $row['password']);
$xmlw -> endElement();
$xmlw -> startElement('param');
$xmlw -> writeAttribute('name', 'vm-password');
$xmlw -> writeAttribute('value', $row['vmpasswd']);
$xmlw -> endElement();
$xmlw -> endElement(); //end params
// Variables
$xmlw -> startElement('variables');
$xmlw -> startElement('variable');
$xmlw -> writeAttribute('name', 'accountcode');
$xmlw -> writeAttribute('value', $row['accountcode']);
$xmlw -> endElement();
$xmlw -> startElement('variable');
$xmlw -> writeAttribute('name', 'user_context');
$xmlw -> writeAttribute('value', 'default');
$xmlw -> endElement();
$xmlw -> startElement('variable');
$xmlw -> writeAttribute('name', 'effective_caller_id_name');
$xmlw -> writeAttribute('value', $row['displayname']);
$xmlw -> endElement();
$xmlw -> startElement('variable');
$xmlw -> writeAttribute('name', 'effective_caller_id_number');
$xmlw -> writeAttribute('value', $row['userid']);
$xmlw -> endElement();
$xmlw -> startElement('variable');
$xmlw -> writeAttribute('name', 'outbound_caller_id_name');
$xmlw -> writeAttribute('value', $row['outbound_caller_id_name']);
$xmlw -> endElement();
$xmlw -> startElement('variable');
$xmlw -> writeAttribute('name', 'outbound_caller_id_number');
$xmlw -> writeAttribute('value', $row['outbound_caller_id_number']);
$xmlw -> endElement();
$xmlw -> endElement(); //end variables
$xmlw -> endElement(); //end user
} // end while
$xmlw -> endElement(); //end domain
$xmlw -> endElement(); //end section
$xmlw -> endDocument(); //end document
echo $xmlw -> outputMemory();
return TRUE;
}

if (isset($_POST['section'])) {
if($_POST['section']=='directory') {
directory();
} else {
if section is not directory, fallback to filesystem, no FS error
not_found();
}
}
?>

At the end of the PHP script we see its main body that checks if the POST request has
a "section" field. If the "section" web request field has the value "directory", then the
directory() function is executed, or else the not_found() function is executed.

This will allow us to use this script to answer mod_xml_curl requests for whatever
XML snippet class: if that class ("section") is not the expected one ("directory")
we'll properly return the "not found" document and FreeSWITCH will happily fall
back to the filesystem without logging errors.

If the request was for the "directory" class, then we make the database query asking
for the XML snippet describing the desired user, identified by "userid" (that is, the
SIP user).

If we find rows in the database we return the properly formatted XML snippet.

If in the database there is no row for that userid (zero returned rows from mysql
query) then again we properly return the "not found" document, so FreeSWITCH will
happily fall back to the filesystem without logging errors.

mod_xml_curl configuration
Edit the file /usr/local/freeswitch/conf/autoload_configs/xml_curl.conf.xml to be:

<configuration name="xml_curl.conf" description="cURL XML Gateway">
<bindings>
<binding name="localhostweb">
<param name="gateway-url" value="http://127.0.0.1:8888/xml_handler.php" bindings="directory"/>
<binding name="localhostweb2">
<param name="gateway-url" value="http://127.0.0.1:80/xml_handler.php" bindings="directory"/>
</binding>
</bindings>
</configuration>

This configuration will first try to get the XML snippet from the non-existing web
server on port 8888 of the FreeSWITCH server machine. It will fail immediately
(because no one is listening at that port), log an error, and try the second binding. The
second binding will try to get an answer from the listening webserver (port 80).

Testing php/mysql setup for
mod_xml_curl
From the FreeSWITCH console command line now "load mod_xml_curl" (or
"reload" it).

Each time FreeSWITCH will need to check User Directory (to authorize a phone
registration in SIP or Verto, to authorize an outbound call from a registered phone, to
find out details to serve an incoming call for a SIP or Verto user, and so on),
mod_xml_curl will enter in action.

First mod_xml_curl will try and fail to connect to a nonexisting webserver on port
8888, and log an error.

Then will connect to port 80, ask for the XML snippet, and if that user is not in
database, will silently (no error logged) fall back to the filesystem.

In this case we call from the user 1011, that is not in the database (we have userid
1000...1003 in the database).

First mod_xml_curl will try and fail to connect to port 888, and log an error. Then it

will connect to port 80, get the "not found" document, and fall back to filesystem,
where the user 1011 is found, and the call is authorized.

Phew!

Lua XML handler
Exactly in the same vein as mod_xml_curl, you can have FreeSWITCH retrieve its
XML configuration snippets by executing a script in one of the supported scripting
languages.

You must first configure the scripting language module, in this case mod_lua, to
handle XML lookup requests for a class of XML snippets.

Then you create a script that sets a variable named XML_STRING, containing the XML
snippet.

That's it. Because lua is embedded in FreeSWITCH (as python and perl) there is no
need for anything else.

You would connect to databases, webservers, do your data massaging, and so on
from the script itself. The script is just supposed to return a string containing the
XML snippet. With any means necessary.

This example Lua script can be configured as xml-handler-script, it sets the variable
XML_STRING to the XML document FreeSWITCH is looking for:

lua xmlhandler script
xml_snippet = [[
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<document type="freeswitch/xml">
<section name="directory">
<domain name="lab.opentelecomsolutions.com">
<params>
<param name="dial-string" value="{^^:sip_invite_domain=${dialed_domain}:presence_id=${dialed_user}@${dialed_domain}}${sofia_contact(*/${dialed_user}@${dialed_domain})}"/>
</params>
<user id="1000">
<params>
<param name="password" value="56789"/>
<param name="vm-password" value="56789"/>
</params>
<variables>
<variable name="accountcode" value="1000"/>
<variable name="user_context" value="default"/>
<variable name="effective_caller_id_name" value="Giovanni Maruz"/>
<variable name="effective_caller_id_number" value="1000"/>
<variable name="outbound_caller_id_name" value="OpenTelecom.IT"/>
<variable name="outbound_caller_id_number" value="+393472665618"/>
</variables>
</user>
<user id="1001">
<params>
<param name="password" value="56789"/>
<param name="vm-password" value="56789"/>
</params>
<variables>
<variable name="accountcode" value="1001"/>
<variable name="user_context" value="default"/>
<variable name="effective_caller_id_name" value="Sara Sissi"/>
<variable name="effective_caller_id_number" value="1001"/>
<variable name="outbound_caller_id_name" value="OpenAdassi.IR"/>
<variable name="outbound_caller_id_number" value="+12125551212"/>
</variables>
</user>
</domain>
</section>
</document>
]]
XML_STRING = xml_snippet

freeswitch.consoleLog("notice", XML_STRING .. "\n")

lua.conf.xml
You must add these two lines to ?
usr/local/freeswitch/conf/autoload_configs/lua.conf.xml:

<param name="xml-handler-script" value="xml_handler.lua"/>
<param name="xml-handler-bindings" value="directory"/>

Lua xml_handler.lua testing
You must first restart FreeSWITCH (because you cannot unload or reload mod_lua).

Then you try a call from user 1000 or 1001. Notice that in the script they have a
"56789" password. So FreeSWITCH will at first reject the call or registration, then
will ask you again for the password, and eventually will authorize.

Summary
In this chapter, we looked at how to obtain XML snippets dynamically, and how to
fall back to filesystem if we fail.

We used two mechanisms for the same aim: getting the same XML snippet.

We can use mod_xml_curl to interrogate a remote or local database.

We can use one of the supported scripting languages to build/retrieve the XML
snippet.

We also saw the caveats: FreeSWITCH will need a very very fast execution of those
lookup and timeouts to protect the users from sluggish backend applications.

In the next chapter, we will see how to control FreeSWITCH externally, via ESL, the
most powerful way to micromanage what FreeSWITCH does.

ESL - FreeSWITCH Controlled by
Events
FreeSWITCH is a core switching and mixing matrix with dozens of modules around
it, providing functionalities and features.

Lowest level control provided by events allows us to effectively leverage the
toolbox approach, where we can choose how and when to use the single tools and
techniques.

We have in our full control the entire wealth of real-time information that composes
all communication packets flowing in and out of FreeSWITCH.

At the same time, we can bring each functionality from any module to life, invoking it
at the right moment.

Full knowledge and full control allows us to tailor FreeSWITCH to the minimum
details of our project, we'll never be forced to admit: "I can't do that".

In this chapter, we'll see:

What is the Event System and its role in FreeSWITCH
How Events look like
How to connect to mod_event_socket
Why Event Socket Library is so relevant
How to write scripts to leverage the power of ESL

Event System Fundamentals
In first chapter of this book we introduced the Event System and its role in
FreeSWITCH architecture.

We'll not repeat that intro here. Let's have some bullets that refresh it for us, and add
important insights:

FreeSWITCH is made by a core hyper-optimized switching and mixing engine
interacting with modules implementing all sort of features
Event System is an internal messaging bus optimized for distribution of
"events"
Anything happens inside FreeSWITCH generates one or more events
There are two different categories of events: system events and logging
events
Logging events are generated any time something has to be logged. Logging
events are then listened to by the modules and applications that write logfiles,
write in database, in syslog, in windows registry, etc
System Events are generated both by FreeSWITCH core, by modules, and by
external application both in reaction to "external" stimulus and to express
"internal" statuses and proceedings
From now on, when we write "events", without further specification, we
mean "system events"
Events are the main way for interaction betweencore and modules, between
modules and modules, and between FreeSWITCH and external applications
Events can be used to carry "commands" that will be executed by modules or
core
Events comes in many categories and subcategories
Events distributed by Event System bus can be "listened for" by modules and
external applications that have "subscribed" (or "binded") to that event
category/subcategory
Events can be "fired", as in "injected", into the Event System bus by core,
modules and external applications
Firing events is a "shoot and forget" action. Shooter has no direct feedback
other that the event was accepted in the bus
All "subscribers" or "listeners" to the event category/subcategory chosen by
shooter will then receive that event, and decide how to react
When all subscribers have read ("consumed") the event, the event is deleted
from the Event System bus.
If even one only subscriber do not read the events is subscribed to fast

enough, those unconsumed events queue up until that subscriber consume them
or the queue is filled
Event System queues are very big (like 10 thousands events), but not infinite.
If the queues are completely filled, Event System bus stops, and
FreeSWITCH fails.
External applications can access the FreeSWITCH Event System via
interfaces provided by modules
Most important one is mod_event_socket, that exposes the Event System via a
bidirectional TCP socket, to which external applications connect and exchange
events in text format

Event format - Headers and Body
Before going to more depths, let's see what an "event" is. Event is a text message in a
format loosely based on those of famous Internet protocols such as SIP, SMTP, and
HTTP: many "headers" (key/value pairs) and possibly one "body" (free form
payload):

Event-Name: RE_SCHEDULE
Core-UUID: 6ddf010e-bc0b-4366-8413-6becd7f77076
FreeSWITCH-Hostname: lxc111
FreeSWITCH-Switchname: lxc111
FreeSWITCH-IPv4: 192.168.1.111
FreeSWITCH-IPv6: 2001%3Ab07%3A5d32%3A860b%3Aa067%3A61ff%3Afe4f%3A2119
Event-Date-Local: 2017-06-26%2018%3A39%3A51
Event-Date-GMT: Mon,%2026%20Jun%202017%2018%3A39%3A51%20GMT
Event-Date-Timestamp: 1498502391402930
Event-Calling-File: switch_scheduler.c
Event-Calling-Function: switch_scheduler_execute
Event-Calling-Line-Number: 71
Event-Sequence: 22105
Task-ID: 1
Task-Desc: heartbeat
Task-Group: core
Task-Runtime: 1498502411

This is the dump of one of the easiest events to spot, the rescheduling of the heartbeat
(an internal FreeSWITCH pulse). This kinds of events, like most events, do not have
a body.

We can see here the textual structure of events, composed by
headername/headervalue pairs separated by ":" (colon).

In the following example, we see an event with a body, a payload. The last header
before the body (separated by double newline, for example, an empty line) indicates
the body length, like in SIP messages:

Event-Name: MESSAGE
Core-UUID: 6ddf010e-bc0b-4366-8413-6becd7f77076
FreeSWITCH-Hostname: lxc111
FreeSWITCH-Switchname: lxc111
FreeSWITCH-IPv4: 192.168.1.111
FreeSWITCH-IPv6: 2001%3Ab07%3A5d32%3A860b%3Aa067%3A61ff%3Afe4f%3A2119
Event-Date-Local: 2017-06-26%2019%3A09%3A13
Event-Date-GMT: Mon,%2026%20Jun%202017%2019%3A09%3A13%20GMT
Event-Date-Timestamp: 1498504153183007
Event-Calling-File: switch_loadable_module.c
Event-Calling-Function: switch_core_chat_send_args
Event-Calling-Line-Number: 864
Event-Sequence: 22348
proto: global
from: 1011%40lab.opentelecomsolutions.com
to: 1001%40lab.opentelecomsolutions.com
type: text/plain
skip_global_process: true
blocking: true
dest_proto: sip
Delivery-Result-Code: 200

Delivery-Failure: false
Content-Length: 12

ciao a tutti

Some headers always available in any event are:

Event-Name: The event's name, which is a description of the type of event it is.
Also known as event's Type or Class.
Core-UUID: The UUID of the current object in the FreeSWITCH core related
to this event.
Event-Date-Local: The date/time of the event according to the system clock.
Event-Date-GMT: The date/time of the event in GMT (that is UTC) time.
Event-Calling-File: The C source file from which the event was fired.
Event-Calling-Function: The name of the function that fired this event.
Event-Calling-Line-Number: The exact line number of the C source file where
this event was fired.

Apart from these common headers, each event type has a number of other fields.
Some of them are very familiar, as in case of channel and system variables (see
previous chapters). Others are specific to the event type.

There are many types of events, for a complete list search http://freeswitch.org/confluence
for "Event Types". Some important event types (or classes or names) are as
follows:

CHANNEL_*
API
DTMF
MESSAGE
CODEC
PLAYBACK_(START|STOP)
RECORD_(START|STOP)
CUSTOM

The last of those event types, CUSTOM, is a porte-manteau class where developers
can add events specific to a module, or to a feature, or to a service. So in case of
events of CUSTOM type, the interesting header, the header that indicates the event's
role and meaning, is "Event-Subclass".

CUSTOM events are generated by most endpoint modules (for example, when a
user logs into Verto, or a SIP phone try to register), and by many applications,
particularly by the conference application, but also by fax management in
mod_spandsp, by voicemail application, by fifo, callcenter, and so on. Also, XML

http://freeswitch.org/confluence

IVR will generate CUSTOM events that subclasses describe entering and exiting of
menus.

For a complete list of subclasses, please search our confluence for "CUSTOM Event
SUBCLASSES". Some examples of CUSTOM event subclasses from various
modules are as follow:

sofia::register_attempt
menu::enter
spandsp::rxfaxresult
filestring::open
conference::maintenance

In case of conference::maintenance (as in some other subclasses) there is another
interesting header, which describes the meaning of the event. In this specific
conference case, it is called Action.

Some Action headers of CUSTOM event subclass conference::maintenance are as
follows:

conference-create
add-member
floor-change
start-talking
play-file-done

Event Handling modules
Event System is circulating events around FreeSWITCH core and modules. What if
you want to tap into the event bus and listen, or inject some events in it? There are
modules called event "handlers" (whose source code is in
/usr/src/freeswitch/src/mod/event_handlers) that are able to interface the Event
System with pretty much anything:

mod_amqp
mod_cdr_csv
mod_cdr_mongodb
mod_cdr_pg_csv
mod_cdr_sqlite
mod_erlang_event
mod_event_multicast
mod_event_socket
mod_event_test
mod_event_zmq
mod_format_cdr
mod_json_cdr
mod_kazoo
mod_odbc_cdr
mod_radius_cdr
mod_rayo
mod_smpp
mod_snmp

All of those modules interface the Event System with the external world, specifically
for Call Detail Records accounting (all the *cdr* modules) or for more general
purposes.

Particularly important are the modules that interface amqp (for example, rabbitMQ,
and so on), zeroMQ, and Erlang. The most popular interface to the Event System is
provided by mod_event_socket.

mod_event_socket
This is the workhorse for FreeSWITCH's Event System interaction with the external
world. mod_event_socket works in the most simple way: it opens a TCP socket,
and listen for incoming connections. Multiple clients can connect and interact
bidirectionally with the Event System via textual commands and responses.

In default configuration only connections to 127.0.0.1 loopback interface,
unreachable from the network, are accepted by a network ACL. See below how to
change this.

All communication is exchanged in clear text on the TCP socket, so if you want to
connect from a remote machine, be sure to do it via a vpn or an ssh connection. Or
have some form of encrypted middleware/proxy.

mod_event_socket accepts many different commands, we'll see later, for displaying
and filtering events, and for injecting events in the Event System bus.

Events are displayed as soon as they appear on the bus, and on a busy FreeSWITCH
server this can be overwhelming for your terminal to display, and can hog the
machine. You want to filter, or find a way to consume them fast enough (for
example, write them to a file you then grep into, or feed them to an application). We'll
see much more on events filtering below.

mod_event_socket configuration
The XML configuration file is, as expected, in
/usr/local/freeswitch/conf/autoload_configs/event_socket.conf.xml

In demo configuration, mod_event_socket listens on port 8021 of all network
interfaces, but its ACLaccepts incoming connections only from 127.0.0.1
(loopback interface on localhost). All other connections are answered with an
"access denied" and shut down.

You can alter which connections are accepted by tuning two knobs:

listen-ip default is "::" for listening on all interfaces, ipv4 and ipv4. You can set
this parameter to "0.0.0.0" for all interfaces, ipv4 only, or "127.0.0.1" for
loopback interface on localhost, etc
apply-inbound-acl by default is "loopback.auto", only loopback interface on
localhost is allowed. You can write an acl in
/usr/local/freeswitch/conf/autoload_configs/acl.conf.xml and reference it here,
or you can use "any_v4.auto" for allowing all IP addresses

Other obvious configuration parameters are port and password.

SECURITY, PLEASE NOTE: I repeat here again, all communication is exchanged
in clear text on the TCP socket, so if you want to connect from a remote machine,
be sure to do it via a vpn or an ssh connection. Or have some form of encrypted
middleware/proxy.

Reading and sending events via telnet
The following example shows how to connect to mod_event_socket via telnet, and
start viewing all events, as they come into the Event System bus. In bold is what we
typed. After each command, press "Enter" twice:

telnet 127.0.0.1 8021
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Content-Type: auth/request

auth ClueCon

Content-Type: command/reply
Reply-Text: +OK accepted

events plain all

Content-Type: command/reply
Reply-Text: +OK event listener enabled plain

From now on, we'll see the events zapping through our terminal. On an idle
FreeSWITCH server, we'll see mainly HEARTBEAT and RE_SCHEDULE events.
On a busy system, we'll not be able to discern in the fast flow. Remember, to escape
from the telnet connection type "Ctrl-]", and then "quit" to close it.

Obviously, it becomes much more interesting if we watch it during a call (use a
terminal with a very big scrollback buffer, or use the "screen" utility, so you can seek
up and down the events):

Later, and in examples, we'll see how to send commands, inject events, and only see
the event types we're interested in.

Let's see a quick example on how to send an event into the Event System bus. We first
use the command "sendevent" with a message type, and then we add the headers
needed by that event type (default headers are automatically added by
FreeSWITCH), and last we type the body, followed by a double carriage return. In
bold what we type, after telnetting to localhost port 8021 (hit "Enter" twice after
"ClueCon" and after "World"):

auth ClueCon

Content-Type: command/reply
Reply-Text: +OK accepted

sendevent SEND_MESSAGE
Content-Type: text/plain
User: 1001
Profile: internal
Host: lab.opentelecomsolutions.com
Content-Lenght: 11
Hello World

Content-Type: command/reply
Reply-Text: +OK df178dbd-9b9a-4b48-bcc0-440737e4a2f6

This event, of type MESSAGE, will send a SIP SIMPLE chat message to phones
registered as "1001" user on our "lab.opentelecomsolutions.com" domain. Linphone
and almost all other SIP softphones can display SIP chat messages.
Remember, to exit your established telnet session, use the "Ctrl-]" key sequence,
followed by "quit".

fs_cli
Surprise, surprise, fs_cli is an application that connects via TCP to
mod_event_socket, on localhost port 8021. After connecting, fs_cli sends some
commands and then enables receiving "logging" events.

Let's see it in action, on port 8021! Disconnect all fs_cli sessions you may have
running and any other application that connects to FreeSWITCH (they're probably
using this same interface), and then you can start sniffing with ngrep:

ngrep -d lo -q -W single port 8021

In another terminal, execute fs_cli. Ngrep will display the connection authorization,
the "api" commands, and then the "log" command that enable displaying of "logging"
events.

Then make a call to 5000 from a registered phone, and see what's displayed by
ngrep:

Event System Commands
Once connected to a mod_event_socket port, or actually once connected in any way
(for example, via other events handler modules) to the Event System, you can interact
via simple commands.

A lot of information is exposed online in our http://freeswitch.org/confluence, search for
"mod_event_socket", at paragraph "Command Documentation".

Let's see the most important, and don't forget to terminate the command, when all
data has been entered (all additional headers, and so on) with double CR/LF
(that is, double "Enter").

http://freeswitch.org/confluence

api
Send an api command (blocking mode) and wait for completion:

api <command><arg>

Api commands are all the ones you can execute typing at the FreeSWITCH console.

Examples:

api originate sofia/mydomain.com/ext@yourvsp.com 1000
api sleep 5000

bgapi
Send an api command (non-blocking mode) this will let you execute a job in the
background and the result will be sent as an event with an indicated uuid to match the
reply to the command):

bgapi <command><arg>

The same API commands are available as with the api command, however, the server
returns immediately and is available for processing more commands.

Example return value:

Content-Type: command/reply
Reply-Text: +OK Job-UUID: c7709e9c-1517-11dc-842a-d3a3942d3d63

When the command is done executing, FreeSWITCH fires an event with the result
and you can compare that to the Job-UUID to see what the result was. In order to
receive this event, you will need to subscribe to BACKGROUND_JOB events.

If you want to set your own custom Job-UUID over plain socket:

bgapi status
Job-UUID: d8c7f660-37a6-4e73-9170-1a731c442148

Reply:

Content-Type: command/reply
Reply-Text: +OK Job-UUID: d8c7f660-37a6-4e73-9170-1a731c442148
Job-UUID: d8c7f660-37a6-4e73-9170-1a731c442148

event
Enable or disable events by class or all (plain or xml or json output format):

event plain <listof events to log or all>
event xml <listof events to log or all>
event json <listof events to log or all>

The event commands are used to subscribe on events from FreeSWITCH. You may
specify any number of events on the same line; they should be separated with space.

Examples:

event plain ALL
event plain CHANNEL_CREATE CHANNEL_DESTROY CUSTOM conference::maintenance sofia::register sofia::expire
event xml ALL
event json CHANNEL_ANSWER

Subsequent calls to 'event' won't override the previous event sets. Supposing, you've
first registered for DTMF:

event plain DTMF

then you may want to register for CHANNEL_ANSWER too; it is enough to give:

event plain CHANNEL_ANSWER

and you will continue to receive DTMF along with CHANNEL_ANSWER, later one
doesn't override the previous.

filter
Specify event types to listen for. Note that this is not a filter out, but rather a "filter
in," that is, when a filter is applied only the filtered values are received. Multiple
filters on a socket connection are allowed.

Usage:

filter <EventHeader><ValueToFilter>

Example:

The following example will subscribe to all events and then create two filters, one to
listen for HEARTBEATS and one to listen for CHANNEL_EXECUTE events:

events plain all
filter Event-Name CHANNEL_EXECUTE
filter Event-Name HEARTBEAT

Now only HEARTBEAT and CHANNEL_EXECUTE events will be received. You
can filter on any of the event headers. To filter for a specific channel you will need to
use the uuid:

filter Unique-ID d29a070f-40ff-43d8-8b9d-d369b2389dfe

To filter multiple unique IDs, you can just add another filter for events for each
UUID. This can be useful for example if you want to receive start/stop-talking events
for multiple users on a particular conference:

filter plain all
filter plain CUSTOM conference::maintenance
filter Unique-ID $participantB
filter Unique-ID $participantA
filter Unique-ID $participantC

This will give you events for Participant A, B, and C on any conference. To receive
events for all users on a conference you can use something like:

filter Conference-Unique-ID $ConfUUID

You can filter on any of the parameters you get in a freeSWITCH event:

filter plain all
filter call-direction Inbound
filter Event-Calling-File mod_conference.c
filter Conference-Unique-ID $ConfUUID

You can use them individually or compound them depending on whatever end result
you desire for the type of events you want to receive

filter delete
Specify the events that you want to revoke the filter. "filter delete" can be used when
some filters are applied wrongly or when there is no use of the filter.

Usage:

filter delete <EventHeader><ValueToFilter>

Example:

filter delete Event-Name HEARTBEAT

Now, you will no longer receive HEARTBEAT events.

filter delete Unique-ID d29a070f-40ff-43d8-8b9d-d369b2389dfe

This is to delete the filter that was applied for the given unique-id. After this, you
won't receive any events for this unique-id.

filter delete Unique-ID

This deletes all the filters that were applied based on any unique-id.

sendevent
Send an event into the event system (multi line input for headers):

sendevent <event-name>

Example of sendevent with a message body, the length of the body is specified by
content-length:

sendevent SEND_MESSAGE
Content-Type: text/plain
User: 1001
Profile: internal
Host: lab.opentelecomsolutions.com
Content-Lenght: 11
Hello World

exit
 exit

Close the socket connection.

auth
auth <password>

You must send this command immediately after a TCP connection.

log
log <level>

Enable displaying of logging events. Level has the same values as in the console, for
example: 7=DEBUG 3=ERR, and so on.

nolog
nolog

Disables logging events output previously enabled by the log command.

nixevent
nixevent <event types | ALL | CUSTOM custom event sub-class>

Suppress the specified type of event. Useful when you want to allow 'event all'
followed by 'nixevent <some_event>' to see all but one type of event.

noevents
noevents

Disable all events that were previously enabled with event.

sendmsg
sendmsg <uuid>

Control an existing call of given uuid

Needs the additional header "call-command", which can have value execute or
hangup.

Examples:

sendmsg ec96830d-0ad5-4a55-afbd-11bb625db2d0
call-command: execute
execute-app-name: playback
execute-app-arg: /tmp/ivr-wakey_wakey_sunshine.wav

sendmsg ec96830d-0ad5-4a55-afbd-11bb625db2d0
call-command: hangup
hangup-cause: USER_BUSY

call-command
This event header can have one of the following two values:

execute
Execute dialplan applications. Need the additional header "execute-app-name", and
the optional headers "execute-app-arg" and "loops" (how many time to repeat the
command).

hangup
Hang up the call. Allows for the optional header "hangup-cause".

Outbound Socket - call connects to you
The dialplan application "socket" makes an outbound TCP connection to the
specified ip:port and the other end can control the call exactly in the same way as in
the inbound connection to mod_event_socket.

You must have a "server" application running, listening to the correct IP address and
port, and ready to accept inbound connections from the "socket" dialplan application.
Once the TCP connection is established, then commands and output are the same as
we saw before.

When you call outbound socket, FreeSWITCH automatically puts the call in parked
state.

The syntax for calling socket from the Dialplan is:

<ip>:<port> [<keywords>]

The following are examples of how to use it in the Dialplan:

<action application="socket" data="127.0.0.1:8084"/>
<action application="socket" data="127.0.0.1:8084 async"/>
<action application="socket" data="127.0.0.1:8084 full"/>
<action application="socket"
data="127.0.0.1:8084 async full"/>

The optional keywords async and full modify the behavior as follows:

async: The async keyword indicates that all commands will return instantly,
making it possible to monitor the socket for events while the stack of commands
are executing. If the async keyword is absent, then each event socket command
will block until it has finished.
full: The full keyword indicates that the other end will have the full command
set for event socket. This is the same command set an inbound event socket
connection has, so you can execute API commands, get global events, and so on.
If the full keyword is absent, then the command set and events are limited to that
particular call. In other words, if full is not specified, then the commands sent
on this socket connection can affect only the channel currently being processed.
Likewise, the socket connection will only receive events related to this
particular channel.

ESL - Event Socket Library
Actually I would not counsel to go the hard and low level way to interact with
FreeSWITCH Event System: we've put a lot of effort to provide you with a higher
level library, available for a lot of scripting languages and for C/C++.

ESL will save you from a lot of tedious tasks, such as managing the TCP connection,
parsing the events, and so on. Many useful and popular functions are already there, so
you don't have to reinvent the wheel.

ESL supported languages
ESL has been developed using only one set of SWIG interfaces, so variables,
methods, and functions have the same names and arguments whatever the
programming language.

java
lua
managed (.NET)
perl
php
python
ruby
tcl
C

ESL Reference
Following are the most important functions and their arguments, as per how they are
available in all ESL implementations for the various programming languages.

eslSetLogLevel
eslSetLogLevel($loglevel)

Calling this function within your program causes your program to issue informative
messages related to the Event Socket Library on STDOUT.

The values for $loglevel are the usual:

0 is EMERG
1 is ALERT
2 is CRIT
3 is ERROR
4 is WARNING
5 is NOTICE
6 is INFO
7 is DEBUG

ESLevent Object
This is the object that represent an Event, can be created (with new()) or received. Its methods are as
follows:

new
new($event_type [, $event_subclass])

Instantiates a new event object of that type. Optionally, in case of CUSTOM and
other type of events, you specify the subclass.

serialize
serialize([$format])

Print the event into colon-separated 'name: value' pairs similar to a sip/email packet
(the way it looks on '/events plain all').

$format can be:

"xml"
"json"
"plain" (default)

setPriority
setPriority([$number])

Sets the priority of the event to $number.

getHeader
getHeader($header_name)

Gets the value of the header $header_name.

getBody
getBody()

Gets the body of the event.

getType
getType()

Gets the event type.

addBody
addBody($value)

Add $value to the body of the event. This can be called multiple times.

addHeader
addHeader($header_name, $value)

Add a header with key = $header_name and value = $value to an event. Can be
called multiple times.

delHeader
delHeader($header_name)

Delete the header with key $header_name.

firstHeader
firstHeader()

Sets the pointer to the first header in an event object, and returns its key name. This
must be called before nextHeader is called.

nextHeader
nextHeader()

Moves to the next header in an event, and returns its key name. firstHeader must be
called before this method. If you're already on the last header when this method is
called, then it will return NULL.

ESLconnection Object
This is the object that represent the network connection to FreeSWITCH listening
socket, can be created with new(). Its methods are as follows:

new
new($host, $port, $password)

Initializes a new instance of ESLconnection, connects to the host $host on the port
$port, and supplies $password to FreeSWITCH.

Intended only for an event socket in "Inbound" mode. In other words, this is only
intended for the purpose of creating a connection to FreeSWITCH that is not initially
bound to any particular call or channel.

Does not initialize channel information (since inbound connections are not bound to a
particular channel). In plain language, this means that calls to getInfo() will always
return NULL:

new($fd)

Initializes a new instance of ESLconnection, using the existing file number contained
in $fd.

Intended only for Event Socket Outbound connections. It will fail on Inbound
connections, even if passed a valid inbound socket.

The standard method for using this function is to listen for an incoming connection on
a socket, accept the incoming connection from FreeSWITCH, fork a new copy of
your process if you want to listen for more connections, and then pass the file number
of the socket to new($fd).

socketDescriptor
socketDescriptor()

Returns the UNIX file descriptor for the connection object, if the connection object is
connected. This is the same file descriptor that was passed to new($fd) when used in
outbound mode.

connected
connected()

Test if the connection object is connected. Returns 1 if connected, 0 otherwise.

getInfo
getInfo()

When FreeSWITCH connects to an "Event Socket Outbound" handler, it sends a
"CHANNEL_DATA" event as the first event after the initial connection. getInfo()
returns an ESLevent that contains this Channel Data.

getInfo() returns NULL when used on an "Event Socket Inbound" connection.

send
send($command)

Sends a command to FreeSWITCH.

Does not wait for a reply. You should immediately call recvEvent or recvEventTimed
in a loop until you get the reply. The reply event will have a header named "content-
type" that has a value of "api/response" or "command/reply".

To automatically wait for the reply event, use sendRecv() instead of send().

sendRecv
sendRecv($command)

Internally sendRecv($command) calls send($command) then recvEvent(), and returns
an instance of ESLevent.

recvEvent() is called in a loop until it receives an event with a header named
"content-type" that has a value of "api/response" or "command/reply", and then
returns it as an instance of ESLevent.

Any events that are received by recvEvent() prior to the reply event are queued up,
and will get returned on subsequent calls to recvEvent() in your program.

api
api($command[, $arguments])

Send an API command to the FreeSWITCH server. This method blocks further
execution until the command has been executed.

api($command, $args) is identical to sendRecv("api $command $args").

bgapi
bgapi($command[, $arguments][,$custom_job_uuid])

Send a background API command to the FreeSWITCH server to be executed in its
own thread. This will be executed in its own thread, and is non-blocking.

bgapi($command, $args) is identical to sendRecv("bgapi $command $args")

Here is a Perl snippet that demonstrates the custom Job-UUID setting (works for all
swigged languages):

my $command = shift;
my $args = join("", @ARGV);

my $con = new ESL::ESLconnection("127.0.0.1", "8021", "ClueCon");

my $e = $con->bgapi($command, $args, "my-job-id");
print $e->serialize("json");

This code returns:

{
"Event-Name": "SOCKET_DATA",
"Content-Type": "command/reply",
"Reply-Text": "+OK Job-UUID: my-job-id",
"Job-UUID": "my-job-id"
}

sendEvent
 sendEvent($event)

Inject an event into the FreeSWITCH Event System.

recvEvent
recvEvent()

Returns the next event from FreeSWITCH. If no events are waiting, this call will
block until an event arrives.

If any events were queued during a call to sendRecv(), then the first one will be
returned and removed from the queue, then the next event will be read from the
connection in sequence.

recvEventTimed
recvEventTimed($milliseconds)

Similar to recvEvent(), except that it will block for at most $milliseconds.

A call to recvEventTimed(0) will return immediately. This is useful for polling for
events.

filter
filter($header, $value)

Same as the "filter" Event System command.

events
events($event_type, $value)

Same as the "events" Event System command.

execute
execute($app[, $arg][, $uuid])

Execute a dialplan application, and wait for a response from the server. On socket
connections not anchored to a channel (most of the time inbound), all three arguments
are required -- $uuid specifies the channel to execute the application on.

Returns an ESLevent object containing the response from the server. The
getHeader("Reply-Text") method of this ESLevent object returns the server's
response. The server's response will contain "+OK [Success Message]" on success
or "-ERR [Error Message]" on failure.

executeAsync
executeAsync($app[, $arg][, $uuid])

Same as execute, but doesn't wait for a response from the server.

This works by causing the underlying call to execute() to append "async: true" header
in the message sent to the channel.

setAsyncExecute
setAsyncExecute($value)

Force async mode on for a socket connection. This command has no effect on
outbound socket connections that are set to "async" in the dialplan and inbound socket
connections, since these connections are already set to async mode on.

$value should be 1 to force async mode, and 0 not to force it.

Specifically, calling setAsyncExecute(1) operates by causing future calls to execute()
to include the "async: true" header in the message sent to the channel. Other event
socket library routines are not affected by this call.

setEventLock
setEventLock($value)

Force sync mode on for a socket connection. This command has no effect on
outbound socket connections that are not set to "async" in the dialplan, since these
connections are already set to sync mode.

$value should be 1 to force sync mode, and 0 not to force it.

Specifically, calling setEventLock(1) operates by causing future calls to execute() to
include the "event-lock: true" header in the message sent to the channel. Other event
socket library routines are not affected by this call.

disconnect
disconnect()

Close the socket connection to the FreeSWITCH server.

ESL installation
ESL is not installed by default. You must explicitly install it from packages, or
compile and install it from source.

If you're installing from Debian packages, then you want to install libesl-perl, python-
esl, freeswitch-mod-perl, freeswitch-mod-python, and so on.

If you're compiling from sources, then you want to check on out http://freeswitch.org/confluen
ce and search for "Event Socket Library" for latest dependencies and installation
instructions.

http://freeswitch.org/confluence

ESL: Examples in Perl
Lets see how to use the Perl ESL implementation to connect and interact with the
Event System in a FreeSWITCH server.

Display Filtered Events
A command line utility that connects to FreeSWITCH listening socket, subscribe to
all events (don't do this on a busy server), and then display only selected types,
further filtered on values in chosen headers.

#!/usr/bin/perl
require ESL;

my $type = ".*";
my $header = ".*";
my $value = ".*";

#$type = "CUSTOM|CHANNEL.*|MESSAGE";
#$header = "Core-UUID|Event-Subclass|Channel-State|Channel-Call-State";
#$value = "HANGUP|ACTIVE|DOWN|CS_EXECUTE";

my $con = new ESL::ESLconnection("localhost", "8021", "ClueCon");
$con->events("plain", "all");

while($con->connected()) {
my $e = $con->recvEvent();
if ($e) {
if(! ($e->getType() =~ /^($type)$/)) {
next;
}
printf "Type: [%s]\n", $e->getType();
my $h = $e->firstHeader();
while ($h) {
if(($h =~ /^($header)$/) && ($e->getHeader($h) =~ /^($value)$/)){
printf "Header: [%s] = [%s]\n", $h, $e->getHeader($h);
}
$h = $e->nextHeader();
}
printf "Body: [%s]\n\n", $e->getBody;
}
}

Use "api" and "bgapi"
Let's remember: "api" blocks and wait for result, "bgapi" returns immediately giving
you an uuid you will use to recognize the results.

#!/usr/bin/perl
require ESL;

my $con = ESL::ESLconnection->new("localhost", "8021", "ClueCon");

$con->api('chat', "sip|1011\@lab.opentelecomsolutions.com|1001\@lab.opentelecomsolutions.com|ciao a tutti1|text/plain");
$con->bgapi('chat', "sip|1011\@lab.opentelecomsolutions.com|1001\@lab.opentelecomsolutions.com|ciao a tutti2|text/plain");

Use "sendEvent"
How to fire an event.

#!/usr/bin/perl
require ESL;

my $con = ESL::ESLconnection->new("localhost", "8021", "ClueCon");
my $e = ESL::ESLevent->new("SEND_MESSAGE");

$e->addHeader("Content-Type", "text/plain");
$e->addHeader("User", '1001');
$e->addHeader("profile", 'internal');
$e->addHeader("host", 'lab.opentelecomsolutions.com');
$e->addBody("ciao a tutti3");
$con->sendEvent($e);

Summary
In this chapter, we saw how to use FreeSWITCH with the maximum possible control:
we tapped into its nervous system, into its internal "Internet of Things", and we were
able to use its features as a real-time toolbox.

The two ways to connect to Event System, inbound and outbound, complement
themselves: use inbound with a supervising client application that governs many
calls; use outbound if you want your server application to control just one call.

We just scratched the surface, but the feeling is the right one: we can actually do the
most complex and crazy things in this way. No need to walk the beaten path.

In the next chapter, we'll see another way to control FreeSWITCH, on a much higher
level of abstraction: mod_httapi allows your application to interact via HTTP.

HTTAPI - FreeSWITCH Asks
Webserver Next Action
HTTAPI allows for FreeSWITCH to ask a webserver what to do to/with a call, and
after executing, ask the webserver again. So, is actually a hyper dynamic protocol,
where FreeSWITCH sends the webserver all info about a call and the results of last
action(s), and webserver reply with what to do as next step. Then the cycle repeat
until hangup or the call has been transferred. The obvious use cases are IVRs, but
other kind of applications may enjoy this approach.

In this chapter we will discuss:

The HTTAPI main concepts
HTTAPI dialplan action
The structure of the document returned by webserver
Configuration od mod_httapi
A sample PHP library that makes HTTAPI applications easier to develop

HTTAPI Rationale
HTTAPI allows for direct control of the call, in dynamic and real time way, step by
step (action by action), as opposed to dialplan or mod_xml_curl that define all the
steps which will be executed by one extension.

When the httpapi dialplan action is executed, FreeSWITCH will make an HTTP
request to a configured webserver. In this HTTP request FreeSWITCH will send to
the webserver informations about the call, and other variables and parameters.

Webserver will answer to FreeSWITCH with a short XML HTTPAPI document
containing what FreeSWITCH must do with/to the call.

FreeSWITCH will execute it, and then will again make a HTTP request to the
webserver, like the previous one.

The cycle repeat itself until the call is hangup or transferred.

HTTAPI dialplan
mod_httapi is invoked by the "httapi" action in dialplan.

 <extension name="myhttapi">
 <condition field="destination_number" expression="^12345$">
 <action application="answer"/>
 <action application="httapi"/>
 </condition>
 </extension>

data
We can pass to "httapi" the optional "data" argument. In "data" we can directly (eg,
without curly braces) write the URL to be used as gateway, bypassing the one set in
module configuration.

Or we can list in curly braces, separated by commas, 3 possible parameters to
bypass the ones set by the configuration profile in use (same technique as in
dialstring).

<action application="httapi" data="http://localhost/freeswitch" />

httapi_profile
Use this parameter to choose which configuration profile to use, bypassing the one
set as default in configuration file. If this parameter is not used, and no default is set
in configuration file, the profile named "default" will be used

<action application="httapi" data="{httpapi_profile=myprofile}" />

url
Use this parameter to bypass the gateway-url set by the configuration profile in use

<action application="httapi" data="{httpapi_profile=myprofile,url=http://my.webserver.com/dir}" />

method
Use this parameter to bypass the method set by the configuration profile in use

<action application="httapi" data="{httpapi_profile=myprofile,url=http://my.webserver.com/dir,method=POST}" />

HTTAPI document syntax
In its most basic form an XML HTTAPI document sent by the webserver in response
to mod_httapi request looks like this:

<document type="text/freeswitch-httapi">
 <params/>
 <variables/>
 <work/>
</document>

As an example, this is the document returned from webserver when pressing "6" on
the keypad while in a call to demo ivr in php httpapi, detailed later in this chapter:

<document type="text/freeswitch-httapi">
 <variables>
 <IVR_variable_01>VariableValue01</IVR_variable_01>
 </variables>
 <params>
 <IVR_param_01>ParamValue01</IVR_param_01>
 </params>
 <variables>
 <main_menu_option>6</main_menu_option>
 </variables>
 <work>
 <playback error-file="ivr/ivr-that_was_an_invalid_entry.wav" loops="3" digit-timeout="15000" file="phrase:demo_ivr_sub_menu" name="sub_menu_option">
 <bind>*</bind>
 </playback>
 <!-- session_id => 9c6f38d3-897a-44aa-9162-bf4f718c6d45 -->
 <!-- hostname => ip-172-31-11-17 -->
 <!-- Caller-Direction => inbound -->
 <!-- Caller-Logical-Direction => inbound -->
 <!-- Caller-Username => 1010 -->
 <!-- Caller-Dialplan => XML -->
 <!-- Caller-Caller-ID-Name => 1010 -->
 <!-- Caller-Caller-ID-Number => 1010 -->
 <!-- Caller-Orig-Caller-ID-Name => 1010 -->
 <!-- Caller-Orig-Caller-ID-Number => 1010 -->
 <!-- Caller-Network-Addr => 188.11.134.42 -->
 <!-- Caller-ANI => 1010 -->
 <!-- Caller-Destination-Number => 12345 -->
 <!-- Caller-Unique-ID => 9c6f38d3-897a-44aa-9162-bf4f718c6d45 -->
 <!-- Caller-Source => mod_sofia -->
 <!-- Caller-Context => default -->
 <!-- Caller-Channel-Name => sofia/internal/1010@52.57.248.151 -->
 <!-- Caller-Profile-Index => 1 -->
 <!-- Caller-Profile-Created-Time => 1498838395878804 -->
 <!-- Caller-Channel-Created-Time => 1498838395878804 -->
 <!-- Caller-Channel-Answered-Time => 1498838395898804 -->
 <!-- Caller-Channel-Progress-Time => 0 -->
 <!-- Caller-Channel-Progress-Media-Time => 1498838395898804 -->
 <!-- Caller-Channel-Hangup-Time => 0 -->
 <!-- Caller-Channel-Transfer-Time => 0 -->
 <!-- Caller-Channel-Resurrect-Time => 0 -->
 <!-- Caller-Channel-Bridged-Time => 0 -->
 <!-- Caller-Channel-Last-Hold => 0 -->
 <!-- Caller-Channel-Hold-Accum => 0 -->
 <!-- Caller-Screen-Bit => true -->
 <!-- Caller-Privacy-Hide-Name => false -->
 <!-- Caller-Privacy-Hide-Number => false -->
 <!-- url => http://localhost/phttapi/book/demo-ivr.php -->
 <!-- IVR_param_01 => ParamValue01 -->
 <!-- main_menu_option => 6 -->

 <!-- input_type => dtmf -->
</work>
</document>

An HTTAPI response must have an HTTP MIME content-type of text/xml
(webserver must be configured to send this content-type). All HTTAPI responses
must include the document tag with the type attribute of text/freeswitch-httapi.
Then, may have any one, or all, of the following tags:

params: These are params (that is, "parameters") the script asks FreeSWITCH
to pass back to the web server on each request. You use the <params> tag to tell
FreeSWITCH to pass custom POST params.
variables: The <variables> tag allows you to set channel variables that can be
used by the FreeSWITCH Dialplan or read back into httapi on subsequent
requests.
work: This is where most of the interesting stuff happens. There are many
different action tags that can be used as children of the <work> tag to make
FreeSWITCH do just about anything with the phone call being controlled:
logging a message at the console, playing a sound file, doing Automatic Speech
Recognition, collecting DTMF keypresses, and so on. The available action tags
and the attributes that correspond to each action are covered in detail in the next
section.

Work actions
The HTTAPI work actions are described in this section. In the following definitions,
DATA is the content of the tag (that is, <tag>*DATA*</tag>).

All work actions have two tags that are always available:

action: Changes the new default target URL.
temp-action: Changes target URL to submit the next request. Subsequent requests
will use the default URL or whatever is specified in the action tag.

Several of the actions can contain one or more bind tags that function in similar
fashion to bind_digit_action

<bind action strip>*EXPR*</bind>
ATTRS:
action : a specific url to go to next if the binding is dialed
strip : a character to strip from the result string, such as #

The following is a list of work actions and their descriptions:

playback
<playback file name error-file action digit-timeout input-timeout loops asr-engine asr-grammar><bind action strip>*EXPR*</bind></playback>

playback plays a file and optionally collects input. It has the following attributes:

file: The path to the file to play
name: Param name to save result
error-file: Error file to play on invalid input
digit-timeout: Timeout waiting for digits after file plays (when input bindings
are present)
input-timeout: Timeout waiting for more digits in a multi-digit input
loops: Maximum number of times to play the file (when input bindings are
present)
asr-engine: Automated Speech Recognition (ASR) engine to use
asr-grammar: Automated Speech Recognition (ASR) grammar to use
terminators: The keys that you want to use to immediately stop and process the
digits collected

Example:

<document type="text/freeswitch-httapi">
 <work>
 <playback action="http://newurl/index.php"
 temp-action="http://newtempurl/index.php"
 name="playback_user_input"
 error-file="ivr/ivr-error.wav"
 file="ivr/ivr-welcome_to_freeswitch.wav"
 asr-engine="pocketsphinx"
 asr-grammar="my_default_asr_grammar"
 digit-timeout="5"
 input-timeout="10"
 loops="3"
 terminators="#">
 <bind strip="#">~\\d{3}</bind>
 </playback>
 </work>
</document>

The playback action is analogous to the playback Dialplan application.

record
<record file name error-file action digit-timeout input-timeout><bind action strip>*EXPR*</bind></record>

record records a file, optionally collects input, and posts the file back to the target
URL. It has the following attributes:

file: The file path to record
name: Param name to save result (will be a multipart form file upload)
error-file: Error file to play on invalid input
beep-file: File to play as an indicator to start recording message (that is, a
voicemail beep)
digit-timeout: Timeout waiting for digits after file plays (when input bindings
are present)
limit: Upper limit of number of seconds to record
terminators: The keys that you want to use to immediately stop and process the
digits collected

Example:

<document type="text/freeswitch-httapi">
 <work>
 <record action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 name="playback_user_input"
 error-file="ivr/ivr-error.wav"
 beep-file="tone_stream://$${beep}"
 file="12345.wav"
 digit-timeout="5"
 limit="60"
 terminators="#">
 <bind strip="#">~\\d{3}</bind>
 </record>
 </work>
</document>

The record action is analogous to the record Dialplan application.

pause
<pause name error-file action digit-timeout input-timeout loops milliseconds><bind action strip>*EXPR*</bind></pause>

pause waits for input for a specific amount of time. It has the following attributes:

milliseconds: Number of milliseconds to pause
name: Param name to save result
error-file: Error file to play on invalid input
digit-timeout: Timeout waiting for digits after file plays (when input bindings
are present)
input-timeout: Timeout waiting for more digits in a multi-digit input
loops: Maximum number of times to play the file when input bindings
are present.
terminators: The keys that you want to use to immediately stop and process the
digits collected

Example:

<document type="text/freeswitch-httapi">
 <work>
 <pause action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 name="pause_user_input"
 error-file="ivr/it_was_that_bug.wav"
 digit-timeout="5"
 milliseconds="15000"
 terminators="#">
 <bind strip="#">~\\d{3}</bind>
 </pause>
 </work>
</document>

speak
 <speak file name error-file action digit-timeout input-timeout loops engine voice><bind action strip>*EXPR*</bind></speak>

speak reads text to the caller using the TTS (Text-to-Speech) engine, optionally
collecting input. It has the following attributes:

text: The text to be spoken to the caller
name: Param name to save result
error-file: Error file to play on invalid input
digit-timeout: Timeout waiting for digits after file plays (when input bindings
are present)
input-timeout: Timeout waiting for more digits in a multi-digit input
loops: Maximum number of times to play the file when input bindings are
present
engine: Text-to-Speech (TTS) engine to use
voice: Text-to-Speech (TTS) voice to use
terminators: The keys that you want to use to immediately stop and process the
digits collected

Example:

<document type="text/freeswitch-httapi">
 <work>
 <speak action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 name="speak_user_input"
 error-file="ivr/ivr-error.wav"
 digit-timeout="5"
 engine="flite"
 voice="slt"
 text="Hello from flite text to speech engine"
 terminators="#">
 <bind strip="#">~\\d{3}</bind>
 </speak>
 </work>
</document>

The speak action is analogous to the speak Dialplan application.

say
<say file name error-file action digit-timeout input-timeout loops language type method gender><bind action strip>*EXPR*</bind></say>

Use the FreeSWITCH say engine to iterate sounds to simulate a human speaker. It has
the following attributes:

text: The text to speak, spell, pronounce, and so on
name: Param name in which the result will be saved
error-file: Error file to play on invalid input
digit-timeout: Timeout waiting for digits after file plays (when input bindings
are present)
input-timeout: Timeout waiting for more digits in a multi-digit input
loops: Maximum number of times to play the file when input bindings are
present
language: Language of speech
type: Type (say interface parameter)
method: Method (say interface parameter)
gender: Gender (say parameter)
terminators: The keys that you want to use to immediately stop and process the
digits collected

Example:

<document type="text/freeswitch-httapi">
 <work>
 <say action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 name="say_user_input"
 error-file="ivr/ivr-error.wav"
 digit-timeout="5"
 language="en"
 type="name_spelled"
 method="pronounced"
 text="This is what the caller will hear"
 terminators="#">
 <bind strip="#">~\\d{3}</bind>
 </say>
 </work>
</document>

The say action is analogous to the say Dialplan application. See the say entry under
Important Dialplan applications in Chapter 6, XML Dialplan.

execute
<execute application data action>*DATA*</execute>

execute executes a FreeSWITCH Dialplan application. It has the following attributes:

application: The Dialplan application to run
data: Alternate source for application data
DATA: The application data

Example:

<document type="text/freeswitch-httapi">
 <work>
 <execute action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 application="log"
 data="INFO this is an info log message"/>
 </work>
 </document>

sms
 <sms to action>DATA</sms>

sms sends an SMS message. It has the following attributes:

to: The destination number
DATA: The message data

Example:

<document type="text/freeswitch-httapi">
 <work>
 <sms action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 to="sip:1007@192.168.1.101">Message text here</sms>
 </work>
</document>

Note: this requires mod_sms to be compiled and loaded. See
http://wiki.freeswitch.org/wiki/Mod_sms for more information.

dial
<dial context dialplan caller-id-name caller-id-number action>*DATA*</dial>

dial places an outbound call or transfer. It has the following attributes:

context: Dialplan context
Dialplan: Dialplan type (usually XML)
caller-id-name: Caller ID Name
caller-id-number: Caller ID Number
DATA: Number to dial or originate string

Example:

<document type="text/freeswitch-httapi">
 <work>
 <dial action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 caller-id-name="HTTAPI Test"
 caller-id-number="19193869900"
 context="default"
 Dialplan="XML">
 sip:2019@10.1.1.12
 </dial>
 </work>
</document>

The dial action will place a call through the Dialplan, and if a new call leg is
created, the call being controlled by HTTAPI will be connected to it.

recordCall
<recordCall limit name action>

recordCall initiates recording of the call. The file will be posted when the call ends.
It has the following attributes:

limit: Timeout in seconds.
name: If this starts with http:// then it must specify the URL where FreeSWITCH
will PUT the file. Your web server must be set up to handle a PUT request in
order to use it this way. If omitted, FreeSWITCH will record to a temporary
directory.

Example:

<document type="text/freeswitch-httapi">
 <work>
 <recordCall action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 name="http://localhost/newfile.wav"
 limit="60"/>
 </work>
</document>

The recordCall action is analogous to the record Dialplan application.

conference
<conference profile action>

conference starts a conference call. It has the following attributes:

profile: Conference profile to use
DATA: The conference name in which the call will be placed

Example:

<document type="text/freeswitch-httapi">
 <work>
 <conference action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 profile="my_new_profile">
 My_Conference
 </conference>
 </work>
</document>

The conference action is analogous to the conference Dialplan application.

hangup
<hangup cause action>

hangup hangs up the call. It has the following attributes:

cause: The hangup cause to send

Example:

<document type="text/freeswitch-httapi">
 <work>
 <hangup action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 cause="NORMAL_CLEARING"/>
 </work>
</document>

The hangup action is analogous to the hangup Dialplan application.

break
break exits the httapi application and continues in the Dialplan.

<document type="text/freeswitch-httapi">
 <work>
 <break/>
 </work>
</document>

log
 <log level clean action>

log writes a log line to fs_cli, console, and log file.

level: The log level to use
clean: If set to a true value, then the log line will not print the log prefix

Example:

<document type="text/freeswitch-httapi">
 <work>
 <log action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 level="info">this is a log message with a prefix</log>
 <log level="warning"
 clean="1">and this is one without</log>
 </work>
</document>

The log action is analogous to the log Dialplan application. Note that the log
Dialplan application does not have a clean option whereas the httapi log action does.

continue
<continue action>

continue performs no specific work actions and continues (that is, a no-op action).
This is useful if you want to request a different action URL based on the results of a
getVar or similar.

<document type="text/freeswitch-httapi">
 <work>
 <continue action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"/>
 </work>
</document>

getVar
 <getVar action temp-action permanent>

getVar gets a channel variable's contents (depends on permissions). It has the
following attributes:

permanent: When set to a true value this variable gets sent on all subsequent
HTTAPI requests for this call, otherwise it is sent only on the next request
name: The variable name to read from the channel (for example,
caller_id_name)

Example:

<document type="text/freeswitch-httapi">
 <work>
 <getVariable name="caller_id_name"
 action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 permanent="1"/>
 </work>
</document>

voicemail
 <voicemail action temp-action check auth-only profile domain id>

voicemail calls the voicemail Dialplan application without requiring "execute"
permissions. It has the following attributes:

check: When set to a true value this allows the caller to check messages; that is,
the mailbox user. If omitted then the caller will be prompted to leave a voice
message in the mailbox.
auth-only: Authenticate only and move on. In the event this mode is chosen, two
new variables will be set on the channel upon successful authentication:

variable_user_pin_authenticated is set to true
variable_user_pin_authenticated_user is the username of the successfully
authenticated user

profile: Voicemail profile name to use (omit for "default").
domain: Domain to use (omit for global domain variable).
id: ID to use (omit to prompt for id).

Example:

<document type="text/freeswitch-httapi">
 <work>
 <voicemail action="http://localhost/newurl.php"
 temp-action="http://localhost/newtempurl.php"
 auth-only="1"
 check="1"
 domain="192.168.1.101"
 id="1010"
 profile="default"/>
 </work>
</document>

The voicemail action is analogous to the voicemail Dialplan application.

vmname
vmname plays a voicemail name and optionally collects input. It has the following
attributes:

id: User's name to play passed as user@domain
name: Param name to save result
error-file: Error file to play on invalid input
digit-timeout: Timeout waiting for digits after file plays (when input bindings
are present)
input-timeout: Timeout waiting for more digits in a multi-digit input (when input
bindings are present)
loops: Maximum number of times to play the file (when input bindings are
present)
terminators: The keys that you want to use to immediately stop and process the
digits collected

Example:

<document type="text/freeswitch-httapi">
 <work>
 <vmname action="http://newurl/index.php"
 temp-action="http://newtempurl/index.php"
 name="vmname_user_input"
 error-file="ivr/ivrerror.wav"
 id="1007@192.168.1.101"
 digit-timeout="5"
 input-timeout="10"
 loops="3"
 terminators="#">
 <bind strip="#">~\\d{3}</bind>
 </vmname>
 </work>
</document>

exiting (param)
In the event that the user hangs up, FreeSWITCH will pass the "exiting" param to let
the webserver know that the call is over, and you can tear down any sessions that you
might have opened and complete any reporting that you might have been keeping track
of. While you can completely ignore this request and FreeSWITCH will recover just
fine, it's expecting a plain text response of "OK".

storing data across successive requests
What is the best way to store pieces of information from one request to the next?
Obviously, you could set and get channel variables, but that could be expensive
with having to do multiple requests per set/get operation.

You could just store those bits of information in a session for easy access later. Each
request will include a session_id POST or GET parameter. With this session_id
parameter value you should be able to initialize a session using its value as the
session identifier. This level of control is available in just about every web
programming language. An example of doing this in PHP would look similar to the
following:

if (array_key_exists('session_id', $_REQUEST)) {
 session_id($_REQUEST['session_id']);
}
session_start();

After you've started the session, you will have access to a session variable or object
that can be used to store information that you can access on subsequent requests.

mod_httapi configuration file
The mod_httapi configuration file is found in conf/autoload_configs and is named
httapi.conf.xml. It contains several settings parameters as well as a profiles section.
The example configuration contains a default HTTAPI profile (you may create your
own profiles).

params
Inside the profile tag you will notice a number of param entries. These control things
such as default settings, and the default URL to use for HTTP requests.

gateway-url
The gateway-url parameter set the default resource that mod_httapi will use for
making requests. This parameter can be overridden in dialplan, as an argument to
httapi application.

method
The method parameter set the default method (GET|POST|PUT) that mod_httapi will
use for making requests. This parameter can be overridden in dialplan, inside curly
braces.

permissions
You may want to have permissions on things such as variables that shouldn't be
changed, or applications and APIs that you don't want to execute inadvertently.

In the example httapi.conf.xml configuration file, within the permissions tag you'll
find many different permissions that you can enable, with even more fine-grained
ACL-style control over certain aspects of some of them.

One thing to note is that any of the ACL-like control lists we'll see below can be
skipped by simply closing the <permission> tag without including the list. This will
default to allow all as if you had created the list with default="allow". The following
two examples will work exactly the same way.

Example one:

<permission name="set-vars" value="true"/>

Example two:

<permission name="set-vars" value="true">
 <variable-list default="allow">
 </variable-list>
</permission>

set-params
It is a permission to allow you to set or restrict the setting of the same parameters that
can be set from within the {}'s when calling httapi from the Dialplan and have them
persist throughout the lifetime of the call.

set-vars
It allows you to set or restrict the setting of channel variables. This permission goes a
step further than the set-params does and allows you to specify which variables you
want to allow the setting of, similar to the way access control is handled in
acl.conf.xml. Notice the default policy and the ability to allow access in the
following snippet from the example configuration file:

<permission name="set-vars" value="true">
 <variable-list default="deny">
 <!-- Variables here may be changed -->
 <variable name="caller_id_name"/>
 </variable-list>
</permission>

The preceding code listed says, in effect, that the ability to set variables is disabled
unless they are specifically named within the variable-list. So, variables named
inside the variable-list are the exception to the rule established with default:

<permission name="set-vars" value="true">
 <variable-list default="allow">
 <!-- Variables here may *not* be changed -->
 <variable name="caller_id_name"/>
 </variable-list>
</permission>

get-vars
allows you the ability to read channel variables from the call. This permission has
the same fine-grained controls that the set-vars option gives.

extended-data
pass much more information to your web application than without it. The default
behavior is to post a succinct overview of the channel and allow you to get the
information you need via HTTAPI commands and subsequent callbacks. If you would
rather have every set channel variable posted to your application upon the initial
request, you only need to enable this option.

extended-data longer than max CGI
length
If you turn on extended-data in configuration profile then you may start missing out on
some of the data that should be passed to your application. The reason for this is that
the default method is a GET request. All the information that is passed with
extended-data can often exceed the maximum allowed length of CGI parameters,
which results in cutting off some of the data from the end of the request. There are a
couple of ways to fix this. The most permanent way is to set the method parameter in
the httapi.conf.xml file as shown here:

<param name="method" value="POST"/>

However, there is a way to set the method per-request if you decide that you only
want to set the method to POST on the requests that are causing issues. You can set
the method in the URL string as shown here:

<action application="httapi"
 data="{url=http://localhost/httapi/index.php,method=POST}"/>

execute-apps
If you set this permission then you'll have the ability to call Dialplan applications
from within your httapi web application. This will allow you to use applications with
an <execute> tag as described in Work actions syntax. This permission has the same
sort of ACL-like control that we have seen in a couple of the other permissions
already. Let's deny access to use applications with a default deny policy, and then
allow the execution of the info and hangup applications:

<permission name="execute-apps" value="true">
 <application-list default="deny">
 <application name="info"/>
 <application name="hangup"/>
 </application-list>
</permission>

expand-vars
This permission allows you to use variables in your applications like you normally
could from the XML Dialplan. Variables like ${caller_id_number} would be
expanded inline. The expression ${caller_id_number} would give you the number of
the calling party. This also gives you a way to use API commands from within your
web applications. Consider this example:

 ${sofia_contact(1010@192.168.1.100)}

This line will execute the sofia_contact API command with the given argument and
have the result inserted in place.

ACL-like control lists are available. You can allow or disallow as many API
commands or variables as you need to. Consider the following XML snippet:

<permission name="expand-vars" value="true">
 <variable-list default="deny">
 <variable name="caller_id_name"/>
 <variable name="caller_id_number"/>
 </variable-list>
 <api-list default="deny">
 <api name="expr"/>
 <api name="lua"/>
 <api name="sofia_contact"/>
 </api-list>
</permission>

The preceding code would allow the setting of the caller_id_name and
caller_id_number channel variables and no others. It would allow the execution of
the expr, lua, and sofia_contact API commands but no others. This example shows the
fine-grained control that you as the application developer and FreeSWITCH system
administrator have over HTTAPI applications running on your system.

dial
allows you to dial a number from your web application that will hit the Dialplan and
be routed accordingly. Enabling any one of dial-set-context, dial-set-Dialplan, dial-
set-cid-name, dial-set-cid-number, or dial-full-originate will enable the dial
permission even if it is set to false elsewhere in the configuration file.

dial-set-dialplan
allow you to change the dialplan kind inside the dial tag. You want always use the
"XML" dialplan, the default.

dial-set-context
allow you to change the dialplan context inside the dial tag. This would allow to use:

<dial context="othercontext">

dial-set-cid-name
allow you to change the callerid name inside the dial tag. This would allow to use:

<dial cid_name="Giovanni Maruzzelli">

dial-set-cid-number
allow you to change the callerid number inside the dial tag. This would allow to use:

<dial cid_number="+393472665618">

dial-full-originate
will allow you to dial using the full endpoint/profile/number syntax. (for example:
sofia/internal/1010@192.168.1.100)

conference
will allow you to call into conferences

conference-set-profile
allow you to change the profile name inside the conference tag. This would allow to
use:

<conference profile="wb">

If conference-set-profile is enabled then conference will be enabled even if it is set
to false elsewhere in the configuration file.

HTTPAPI libraries for PHP and
Python
As you looked at the examples earlier in the chapter, you may have thought that while
there might be a lot of power in this httapi thing, you really don't want to learn
another XML format to control FreeSWITCH. Also, manually printing all of that
XML could be a huge hassle. That's why the httapi XML was written to be easy to
implement with a helper library in the language of your choice.

A couple of such libraries exist, for PHP and for Python. Both libraries were
developed by Raymond Chandler, and you can find them in the freeswitch-contrib
GIT repository, under the directory intralanman. To download the libraries and the
examples (and a whole lot of other good stuff):

 cd /usr/src
 git clone https://freeswitch.org/stash/scm/fs/freeswitch-contrib.git
 cd freeswitch-contrib/intralanman

There you'll find a PHP and a Python directory. Both PHP and Python libraries are
composed by one only file (phttapi.php and httapy.py), for ease of use.

The demo-ivr in PHP-HTTAPI
Before you start, you need to already have a web server set up to serve up PHP files,
with the PHP XML extensions installed. Next thing you'll need to do is the PHTTAPI
library.

In our demo script, named "demo-ivr.php", we have the library in the parent
directory, "required" in the second line:

<?php
require "../phttapi.php";

if (array_key_exists('session_id', $_REQUEST)) {
 session_id($_REQUEST['session_id']);
}
session_start();

if (array_key_exists('exiting', $_REQUEST)) {
 header('Content-Type: text/plain');
 print "OK";
 exit();
}

$demo = new phttapi();
$opt = array_key_exists('main_menu_option', $_REQUEST) ? $_REQUEST['main_menu_option'] : '';

$demo->start_variables();
$demo->add_variable('IVR_variable_01', 'VariableValue01');
$demo->end_variables();
$demo->start_params();
$demo->add_param('IVR_param_01', 'ParamValue01');
$demo->end_params();

if (preg_match('/^10[01][0-9]$/', $opt)) {
 $xfer = new phttapi_dial($opt);
 $xfer->context('default');
 $xfer->dialplan('XML');
 $demo->add_action($xfer);
} else {
 switch ($opt) {
 case '1':
 $conf = new phttapi_dial('9888');
 $conf->caller_id_name('another book reader');
 $conf->context('default');
 $conf->dialplan('XML');
 $demo->add_action($conf);
 break;

 case '2':
 $echo = new phttapi_dial('9196');
 $echo->context('default');
 $echo->dialplan('XML');
 $demo->add_action($echo);
 break;

 case '3':
 $moh = new phttapi_dial('9664');
 $moh->context('default');
 $moh->dialplan('XML');
 $demo->add_action($moh);
 break;

 case '4':

 $clue = new phttapi_dial('9191');
 $clue->caller_id_name('another book reader');
 $clue->context('default');
 $clue->dialplan('XML');
 $demo->add_action($clue);
 break;

 case '5':
 $monkey = new phttapi_dial('1234*256');
 $monkey->dialplan('enum');
 $demo->add_action($monkey);
 break;

 case '6':
 if (array_key_exists('sub_menu_option', $_REQUEST) && $_REQUEST['sub_menu_option'] == '*') {
 unset($_SESSION['first_sub_play_done']);
 $demo->add_action($c = new phttapi_continue());
 break;
 }
 $demo->start_variables();
 $demo->add_variable('main_menu_option', 6);
 $demo->end_variables();

 $sub = new phttapi_playback();
 $sub->error_file('ivr/ivr-that_was_an_invalid_entry.wav');
 $sub->loops(3);
 $sub->digit_timeout('15000');

 if (!array_key_exists('first_sub_play_done', $_SESSION)) {
 $_SESSION['first_sub_play_done'] = TRUE;
 $sub->file('phrase:demo_ivr_sub_menu');
 } else {
 $sub->file('phrase:demo_ivr_sub_menu_short');
 }

 $star = new phttapi_action_binding('*');
 $sub->add_binding($star);
 $sub->name('sub_menu_option');

 $demo->add_action($sub);
 break;

 case '9':
 $continue = new phttapi_continue();
 $demo->add_action($continue);
 break;

 default:
 $intro = new phttapi_playback();
 $intro->error_file('ivr/ivr-that_was_an_invalid_entry.wav');
 $intro->loops(3);
 $intro->digit_timeout('2000');
 $intro->input_timeout('10000');
 $intro->name('main_menu_option');

 if (!array_key_exists('first_play_done', $_SESSION)) {
 $_SESSION['first_play_done'] = TRUE;
 $intro->file('phrase:demo_ivr_main_menu');
 } else {
 $intro->file('phrase:demo_ivr_main_menu_short');
 }

 $b1 = new phttapi_action_binding(1);
 $b2 = new phttapi_action_binding(2);
 $b3 = new phttapi_action_binding(3);
 $b4 = new phttapi_action_binding(4);
 $b5 = new phttapi_action_binding(5);
 $b6 = new phttapi_action_binding(6);
 $b9 = new phttapi_action_binding(9);
 $bext = new phttapi_action_binding('~10[01][0-9]');
 $bext->strip('#');

 $intro->add_binding($bext);

 $intro->add_binding($b1);
 $intro->add_binding($b2);
 $intro->add_binding($b3);
 $intro->add_binding($b4);
 $intro->add_binding($b5);
 $intro->add_binding($b6);
 $intro->add_binding($b9);

 $demo->add_action($intro);
 }
}
header('Content-Type: text/xml');
foreach ($_REQUEST as $key => $val) {
 $demo->comment(" $key => $val ");
}

print $demo->output();

Copy the demo script in the web documents directory on your web server.

Please follow along as we discuss each line of code and what it does.

if (array_key_exists('session_id', $_REQUEST)) {
 session_id($_REQUEST['session_id']);
}
session_start();

This block will start the session using the session_id like we described earlier in this
chapter.

if (array_key_exists('exiting', $_REQUEST)) {
 session_destroy();
 header('Content-Type: text/plain');
 print "OK";
 exit();
}

If we see the exiting parameter, we destroy the PHP session and tell FreeSWITCH
we understand and then we exit the script.

 $demo = new phttapi();

Here, we create the httapi object. This object ($demo) allows us to perform
operations such as work actions.

 $opt = array_key_exists('main_menu_option', $_REQUEST) ?
 $_REQUEST['main_menu_option'] : '';

This is a simple if/then/else condition that will make sure $opt is always set, even if
the main_menu_option is empty. The main_menu_option, which we later bind to the
options, is going to be populated with the keys that were pressed by the caller.

if (preg_match('/^10[01][0-9]$/', $opt)) {
 $xfer = new phttapi_dial($opt);
 $xfer->context('default');
 $xfer->Dialplan('XML');
 $demo->add_action($xfer);
} else {

This block will test if the option matches the extension regex. If it is then we build a
new phttapi_dial object ($xfer), set the destination, and then add the action to the
$demo object. If it's not an extension, we drop into a switch statement that tests for
each of the single keypress options.

 case '1':
 $conf = new phttapi_dial('9888');
 $conf->caller_id_name('another book reader');
 $conf->context('default');
 $conf->Dialplan('XML');
 $demo->add_action($conf);
 break;

If option 1 was pressed, then we create a dial option that corresponds to the dial tag
that we described earlier in this chapter. Each of the attributes on the tag have a
corresponding method in the phttapi_dial class. For example, the context method sets
the context attribute, the Dialplan method sets the Dialplan attribute, and so on.
(Option 1 will send the caller to the public FreeSWITCH conference server.)

Cases 2 through 5 are all dial objects and have the same basic logic with the
attributes assigned differently to achieve the desired results for each option.

 case '6':
 if (array_key_exists('sub_menu_option', $_REQUEST) && $_REQUEST['sub_menu_option'] == '*') {
 unset($_SESSION['first_sub_play_done']);
 $demo->add_action($c = new phttapi_continue());
 break;
 }
 $demo->start_variables();
 $demo->add_variable('main_menu_option', 6);
 $demo->end_variables();

 $sub = new phttapi_playback();
 $sub->error_file('ivr/ivr-that_was_an_invalid_entry.wav');
 $sub->loops(3);
 $sub->digit_timeout('15000');

 if (!array_key_exists('first_sub_play_done', $_SESSION)) {
 $_SESSION['first_sub_play_done'] = TRUE;
 $sub->file('phrase:demo_ivr_sub_menu');
 } else {
 $sub->file('phrase:demo_ivr_sub_menu_short');
 }

 $star = new phttapi_action_binding('*');
 $sub->add_binding($star);
 $sub->name('sub_menu_option');

 $demo->add_action($sub);
 break;

Option 6 is a little tricky and should probably be broken out into its own file, as it is

technically a separate IVR. We included it in a single file for you here to make it
easier to install and test. (Option 6 demonstrates an IVR submenu.)

 case '9':
 $continue = new phttapi_continue();
 $demo->add_action($continue);
 break;

With this chunk of code, we simply do a continue, which has the effect of
"repeating these options" as there are no bindings and no way to pass the
main_menu_option parameter.

 default:
 $intro = new phttapi_playback();
 $intro->error_file('ivr/ivr-that_was_an_invalid_entry.wav');
 $intro->loops(3);
 $intro->digit_timeout('2000');
 $intro->input_timeout('10000');
 $intro->name('main_menu_option');
 $intro->terminators('#');

 if (!array_key_exists('first_play_done', $_SESSION)) {
 $_SESSION['first_play_done'] = TRUE;
 $intro->file('phrase:demo_ivr_main_menu');
 } else {
 $intro->file('phrase:demo_ivr_main_menu_short');
 }

The default case action is to play the intro file. To simulate the way the ivr Dialplan
application does it, we'll just store something in the session to let us know whether or
not we've already played the long intro or not. (The short and long greetings are
explained in IVR menu definitions in Chapter 7, Phrase Macros and XML IVRs)

 $b1 = new phttapi_action_binding(1);
 ...
 $bext = new phttapi_action_binding('~10[01][0-9]');

 $intro->add_binding($b1);
 ...
 $intro->add_binding($bext);
 ...
 $demo->add_action($intro);

In this section the ellipses indicate that the other options were left out for brevity.

You can see here that we create a binding object for each of the digit choices and then
add each binding to the playback action. Then, just as with our previous examples,
we add the action to the $demo object. Obviously, we could have built out a single
binding with a more complete regex that would have worked for all the digits.
However, we did it this way to show that you can have multiple bindings with single
digits and/or regexes and things will still work as designed.

header('Content-Type: text/xml');
print $demo->output();

Here, we set the content type of the response to text/xml and print the output of the
object we've been building. FreeSWITCH won't understand your responses if you
use any other content-type than text/xml, so be sure to set that however it's done in
your language of choice.

And this is the terminal output when we first type: "fsctl loglevel 6", and then make a
call into our newly created HTTAPI extension, and press "3":

Summary
In this chapter we learned about the new functionality unleashed with mod_httapi. By
combining a web server with FreeSWITCH it is now possible to do call control
using the simple HTTAPI markup. Further, we also discussed a PHP library
(phttapi.php) that provides an abstraction layer to make it even easier to build
telephony applications on a web server. By using mod_httapi, enterprises can
leverage the knowledge of their web developers to assist with creating telephony
applications. Furthermore, web developers need not learn all that a FreeSWITCH
administrator needs to know. Rather, they can learn just HTTAPI and still have
everything they need to build feature-rich, web-controlled telephony applications.

In the next chapter, we will focus on a very important subject in today's converged
world: Conferencing and WebRTC Videoconferencing

Conferencing and WebRTC Video-
Conferencing
Conferencing is one of the premium services you want to offer to your users and your
customers. In these times where we're between cost cuts and time constraints, the
ability to have a virtual meeting is a real bonus.

So more so if you can manage the meeting, give the "talk" floor in an ordered manner
to each presenter, mute and unmute each and every of the participants, etc.

And when you add to the mix the video stream from each participant webcam, the
possibility to share a presentation screen, to play videos, to record the session, and
to have different persons "on stage" at the same time... That's not only cheaper and
faster than walking in a physical room to join a meeting, is also more productive!

We have also developed a WebRTC client that fully leverage our contemporary
VERTO protocol to offer a beautiful, productive, immersive and engaging conference
experience to participants and moderators!

FreeSWITCH gives you all the building blocks, and thanks to WebRTC support, your
conferences' participants, moderators and presenters only need a standard browser
on their computer, tablet or smartphone.

In this chapter we will discuss:

Conferencing concepts, audio and video
Conferencing support in FreeSWITCH
Audio Conferencing Setup in FreeSWITCH
Audio Conferencing Operation
Video Conferencing Setup in FreeSWITCH
Video Conferencing Operation
Verto Communicator in Video Conferencing
Video Conferencing Additional Tricks

Conferencing Concepts
Conferencing, participating in a call where more than two parties can communicate,
has always been one of the most sought-of service in telecommunication.

Technology for allowing more than two parties to concurrently talk each other (eg,
not in a push-to-talk service) is very much different than the one used for "normal"
calls with two participants. In a "normal" call, you only care that media streams goes
back and forth from caller to callee. Actually you can have (and often you have) the
media streams (via RTP) going directly from caller to callee and back, bypassing
FreeSWITCH or any other telecommunication server.

Conferencing, on the other hand, needs a server. The most basic function of a
conferencing server is mixing, eg merging, the different media streams that are sent
by participants. The resulting merged stream is broadcasted to all participants. So,
each participant sends to server its own media stream, and all participants receive
from server a media stream that is the "sum" of the streams the server received from
them all. Participants do not communicate directly with each other, they are linked
together in a "star topology" where the conferencing server is the central hub.

On top of the basic "merge all incoming streams and send the resulting stream out"
function, conferencing servers can have much more advanced features. They can
accept commands to alter how the incoming streams are merged, to only merge some
of them (or to broadcast one only), to play media files to participants, to record the
conferencing session, to alter the characteristics of the streams that are received or
sent out, to ask pin code identification to participants, to consider one or more
participants as "moderators" bearing powers on other participants and conference
management, and many more.

As you correctly suspected, FreeSWITCH provides for all that and much more.

Conferencing Support in FreeSWITCH
Since the first stages of its drawing board phase, FreeSWITCH has been designed to
excel in mixing capabilities. Streams can be combined and massaged by the core in
an hyper-efficient way.

The media processing engine in FreeSWITCH core is very flexible, and provides
hooks so that core developers and contributors can add features without ever risking
to compromise stability and efficiency of the system.

There are two obvious main areas of media processing: audio and video. Audio and
video are treated in a complete different way because of their own completely
different nature.

Audio conferencing
Audio streams are composed by a sequence of audio samples. Each audio sample is
essentially a number (a quantity) representing the evolution of the sound in time.
Sound can be described by those sine waves we've seen in high school textbooks,
and each sample is the value in amplitude at a certain point in time.

Mixing (merging, combining) two or more sound samples is essentially about
summing their numeric value, and divide the total by the number of streams we are
mixing (eg: taking the average at each point in time). Obviously, is not at all so
simple when the samples have been previously compressed, encoded, etc. And then
you want to normalize the volume. But is exactly like that in its simplest and
conceptual form (uncompressed, raw, sound samples).

Video conferencing
Video streams are another thing altogether! They are a complex sequence of values
that describe how an image (the "screen") changes over time. You have a streaming
movie (or a webcam feed) at 1920x1080 pixel resolution. Each one of those pixels,
or most of them (very rarely all of them), can change value (of color, brightness, etc)
at each point in time. So, the samples at each point in time are not representing the
value of each pixel in the screen, but the result of complex calculations that analyze
which pixel changed and how. You cannot add them, no meaning in that.

Also, the result you want when you combine video streams together is almost never
their blending superimposition one on each other (like a "transparency" transition
effect). You want to divide the screen real estate into areas, and display a different
video streams (scaled) in each defined area. Or you want to display a floating logo,
or a caption on each one of those screen areas. This is more similar to the "video
mixer and effects" processor used by the director of a TV talk show.

There are various strategies for video conferencing (video streams combining) in
today's telecommunication world, and each one has its own rationale and use cases:

Peer-to-Peer (MESH) this is based on pure device to device communication
(without server), where each participant send and receive video streams to and
from all other participants. Streams are combined device-side (eg, in the
browsers). Control commands may be broadcasted from each participant to all
others if those commands must affect all devices' displays. Obvious problem of
this strategy is that the number of video streams and the bandwidth grows
quadratically with the number of nodes: 3 conference participants exchange 6
video streams, 4 conference participants 12 video streams, 10 participants
would exchange 90 video streams, etc. This technique is popular in WebRTC
services, but is not used with more than 3 or 4 conference participants.
Selective Forwarding Unit (SFU) is a central server that receives the video
streams from all participants, and decide which stream to forward to which
participant. The central server (the SFU) is not combining streams or applying
effects to them, it just routes packets in and out. Streams are combined device
side (eg, in the browsers) and normally they just shows in different areas of the
screen, without further processing. If multiple streams need to be combined on
participants screen, all of those streams need to be routed to all participants.
This can be very expensive in terms of bandwidth usage, and of client side CPU
Multipoint Conferencing Unit (MCU) is a central server that receives the
video streams from all participants, mixes and apply transformations and effects

to them, and then sends the one stream resulting from the processing to all
participants. This has the lowest possible requirements in terms of bandwidth
and client side CPU (each client sends its stream to the MCU and receive one
stream from the MCU, ready to be displayed), but put a lot of stress on the
MCU, that has to decode all the streams that are meant to be mixed, apply them
complex Computer Graphics for captions, logos, merging and scaling and then
reencode the result.
FreeSWITCH is an advanced MCU (where mixing video streams and
applying effects is a very heavy task) that can also have the irrelevant CPU
requirement of an SFU in the limit case of "at each time only one participant
originated video stream is showed on all participants screens" (eg, no video
mixing and effects, only routing one of the incoming video streams to all
participants).

Audio Conferencing setup in
FreeSWITCH
FreeSWITCH includes a powerful built-in engine which allows the mixing of audio
channels between callers in a multi-user audio conferencing system. mod_conference
allows for full control of all audio mixing and caller interaction features, such as
detection of touch-tones, management of send and receive audio paths per channel,
volume controls, gain controls, and more. You can create as many conferences as you
like, as long as free system resources (that is, memory, CPU cycles, and so forth) are
still left in the server.

Configuration of mod_conference is located in
/usr/local/freeswitch/autoload_configs/conference.conf.xml file. A conference
characteristics and behavior are set by its profile. You can have many profiles in
configuration file, each one with its own unique set of parameters. A conference is
assigned to a profile when is created (usually in dialplan). The conference
configuration file is divided into several sections. We'll see all of them below.

profiles
A conference profile is a set of settings that can be applied to a particular conference.
In combination with caller-controls (discussed in this section), conference profiles
allow for the complete customization of the behavior of individual conferences. You
can create a couple profiles and apply them across many conferences, create a
profile for each conference you intend to utilize, or you can simply utilize the
defaults.

General conference profile structure is as follows:

<profiles>
<profile name="default">
<param name="paramName" value="paramValue"/>
</profile>
</profiles>

You can have any number of <profile> tags, and each <profile> tag can have any
number of <param> tags. The following are some of the parameters that are
available. For a full list, and extended explanations, please consult our
documentation online on http://freeswitch.org/confluence, searching for "mod_conference".

http://freeswitch.org/confluence

rate
The rate parameter specifies the default (and highest) sampling rate that the
conference bridge will utilize. All callers who call into this channel will have their
audio transcoded into this sampling rate if they are not already at that rate. For the
purposes of audio mixing, this defines the lowest sampling rate in relation to the
system-if two callers have HD phones but call into a conference where the rate is
8000, those callers will have their audio sampled down to the lower rate.

Parameter syntax: <param name="rate" value="8000"/>

Available options: 8000, 12000, 16000, 24000, 32000, and 48000

caller-controls
This parameter specifies the caller-controls profile to use with this conference
bridge.

Parameter syntax: <param name="caller-controls" value="default"/>

auto-record
This parameter specifies whether to automatically record conferences or not.
Recording will begin once min-required-recording-participants have joined. This
option, if set, must consist of a path that can be written to for the purposes of
recording the conference.

Parameter syntax: <param name="auto-record" value="filename"/>

Default: off

Sample filename:
/usr/local/freeswitch/sounds/conferences/${conference_name}.wav

The sample filename listed would record conferences into a file based on the
conference bridge's name.

interval
This parameter specifies the number of milliseconds per frame that are mixed. This
setting is similar to how ptime works, but does not need to match the actual ptime of
a caller. Higher numbers require less CPU usage, but can cause conversation quality
issues, so experiment with your setup. The default is usually OK.

Parameter syntax: <param name="interval" value="20"/>

Default: 20

energy-level
This parameter specifies the energy level (or strength/volume of audio) required for
audio to be sent to the other users. The energy level is a threshold that dictates the
level at which a person is determined to be speaking versus the background noise
received. This feature helps remove background or ambient noise from being mixed
into the conference. If this option is too high, it can result in clipping at the beginning
and end of people's sentences. The value 0 disables the detection and will bridge all
packets even if they are only background noise.

Parameter syntax: <param name="energy-level" value="20"/>

Default: 20

Set 0 to disable completely

member-flags
This parameter allows for setting member-specific flags or parameters on individual
conference members. These options include whether a participant is a moderator,
whether to be wasteful with packet mixing (that is, send audio to individuals even
when no speaking is happening in the conference), whether or not a specific member
is the leader of a conference (and thus, the conference should terminate when they
leave), and so on. Options should be separated by a pipe | character.

Parameter syntax: <param name="member-flags" value="waste|endconf"/>

Some of the options for the member-flags parameter follows. For a full list, and
extended explanations, please consult our documentation online on http://freeswitch.org/con
fluence, searching for "mod_conference"

moderator: Member has a different set of caller-controls, and can manage the
conference: mute and unmute participants, etc
deaf: Prevents the members from listening to other members in the conference
by default (this can be changed after the conference has begun).
waste: Sends audio to channels even when no conversation is occurring.
dist-dtmf: Distributes DTMF signals to each channel. When someone sends a
DTMF tone, it is normally absorbed and processed by FreeSWITCH. This
option prevents that from happening and instead echoes the DTMF tone to all
other members.
endconf: Specifies that the conference should end when this
member exits.

http://freeswitch.org/confluence

conference-flags
This parameter sets the conference-wide flags that dictate how the conference
behaves. Options should be separated by a pipe | character.

Parameter syntax: <param name="conference-flags" value="wait-mod|audio-
always"/>

Some of the options for the conference-flags parameter follows. For a full list, and
extended explanations, please consult our documentation online on http://freeswitch.org/con
fluence, searching for "mod_conference"

wait-mod force users to wait for the moderator before the conference begins.
Moderators are determined via the Dialplan, when bridged to the conference, by
passing an extra member flag. While waiting for the moderator to join, callers
hear music on hold.
audio-always Do not use energy detection to choose which participants to mix;
instead always mix audio from all members
restart-auto-record If the auto-record conference param is set, and recording
is stopped, auto recording will continue in a new file

http://freeswitch.org/confluence

tts-engine
This parameter specifies the Text-To-Speech engine to utilize within this conference
bridge.

Parameter syntax: <param name="tts-engine" value="cepstral"/>

tts-voice
This parameter specifies which Text-To-Speech engine voice to utilize within this
conference bridge.

Parameter syntax: <param name="tts-voice" value="david"/>

pin
This parameter specifies the PIN code (that is pass code or password) that must be
entered before user is allowed to enter the conference.

Parameter syntax: <param name="pin" value="12345"/>

max-members
This parameter sets the maximum number of members allowed in the conference. If
this number is reached and an additional member tries to join, the max-members-
sound will be played and the caller will not be allowed to enter the conference
bridge.

Parameter syntax: <param name="max-members" value="20"/>

caller-id-name
This parameter instructs the caller ID name to set when making an outbound call from
within this conference bridge.

Parameter syntax: <param name="caller-id-name" value="John Doe"/>

caller-id-number
This parameter instructs the caller ID number to set when making an outbound call
from within this conference bridge.

Parameter syntax: <param name="caller-id-number" value="4158867900"/>

comfort-noise
This parameter instructs the volume level of background white noise to get added to
the conference. Sometimes callers think they have been dropped from a conference if
the audio level remains too quiet. This comfort noise setting provides white noise on
the line so the caller knows the line is still connected. Note that at higher audio
sampling rates, this noise can become bothersome, so you may wish to tweak this
setting if you go above 8000 Hz sampling rates.

Parameter syntax: <param name="comfort-noise" value="1000"/>

announce-count
This parameter will speak the total number of callers in the conference when a new
person joins, but only when the threshold specified in this parameter is reached. It
requires a valid text-to-speech engine.

Parameter syntax: <param name="announce-count" value="5"/>

suppress-events
This parameter is for use with the FreeSWITCH event system. This parameter is a
comma delimited string that specifies which events will NOT be sent to the socket
when getting CUSTOM conference::maintenance events..

Parameter syntax: <param name="suppress-events" value="add-member,del-
member"/>

sound-prefix
This parameter sets a default path from where to retrieve conference audio files.

Parameter syntax: <param name="sound-prefix"
value="/usr/local/freeswitch/sounds/"/>

sounds
Many parameters are available for setting custom sounds to play from within the
conference bridge when certain activities occur. All sounds are played to individual
caller channels and not to all parties in the conference, with the exception of enter-
sound and exit-sound, which are played to all participants.

All sound files are specified with the format: <param name="sound-name"
value="file.wav"/>

muted-sound: This sound is played when a caller has been muted.
unmuted-sound: This sound is played when a caller is no longer muted.
alone-sound: This sound is played to a caller when they are the only remaining
party.
enter-sound: This sound is played to all members when a new caller joins the
conference.
exit-sound: This sound is played to all members when a caller leaves the
conference.
kicked-sound: This sound is played when a caller is kicked out from the
conference.
locked-sound: This sound is played to callers who try to join a locked
conference.
is-locked-sound: This sound is played to conference participants when a
conference is locked.
is-unlocked-sound: This sound is played to conference participants when a
conference is unlocked.
pin-sound: This prompt is used while asking for a conference pin.
bad-pin-sound: This sound is played when an invalid PIN number is entered.
perpetual-sound: A special setting-this plays a sound in a continuous loop
forever. This can be used to broadcast sales or emergency messages to callers.
moh-sound: A file or resource handle that plays a particular music-on-hold
stream to the conference, when there is only one member in the conference.
When a second member joins, this audio will stop, unless the mod-wait settings
have been specified (as mentioned earlier).
max-members-sound: If someone tries to join a conference that already has the
maximum amount of members, this file is played.

caller-controls
Conferences allow caller controls groups which specify what commands are
available to participants via touch-tones from within an active conference.
Commands can include modifying the volume of the conference, mute/un-mute
himself, or more advanced options such as playing menus to individuals or moving
people from one conference to another.

Caller controls are based on pre-configured templates that are applied when a
conference is started. For example, you can specify a group of controls that are
available (such as the 0 key for mute, 1 to lower the volume, and 3 to increase the
volume) and then apply those controls to three different conferences. The settings are
applied when the conference begins (first caller joins) and remain the same for the
duration of the conference (last caller left). You cannot have one party entering the
conference with one set of controls and another party with another set of controls.

Do not name your caller-controls groups "default" or "none". Those words are
reserved for the default key mappings or no key mappings, respectively.

Following is an example of the caller-controls configuration:

<caller-controls>
<group name="standard-keys">
<control action="vol talk dn" digits="1"/>
<control action="vol talk zero" digits="2"/>
<control action="vol talk up" digits="3"/>
<control action="transfer" digits="5"
data="100 XML default"/>
<control action="execute_application" digits="0"
data="playback conf_help.wav"/>
<control action="execute_application" digits="#"
data="execute_dialplan conference-menu"/>
</group>
</caller-controls>

The preceding example shows how to create a caller-controls profile named
standard-keys. The keys 1, 2, and 3 lower, normalize, and raise the volume
respectively, the key 5 transfers the caller who pressed the key to an extension 100,
and the keys 0 and # each execute a specific Dialplan application.

caller-controls group "default" is automatically set to:

<caller-controls>
<group name="default">
<control action="mute" digits="0"/>
<control action="deaf mute" digits="*"/>
<control action="energy up" digits="9"/>
<control action="energy equ" digits="8"/>
<control action="energy dn" digits="7"/>
<control action="vol talk up" digits="3"/>

<control action="vol talk zero" digits="2"/>
<control action="vol talk dn" digits="1"/>
<control action="vol listen up" digits="6"/>
<control action="vol listen zero" digits="5"/>
<control action="vol listen dn" digits="4"/>
<control action="hangup" digits="#"/>
</group>
</caller-controls>

advertise
The advertise section of the conference configuration file allows you to generate
presence events (advertisements) to services and subscribed parties via the
FreeSWITCH event system. The idea is to set up permanent room names that generate
presence events just like a phone or other device would. An outside program can then
monitor whether a conference room is in use or not.

Advertise settings contains a room name in each element within advertise tags, as
shown in this example:

<advertise>
<room name="888@$${domain}" status="FreeSWITCH"/>
</advertise>

Video-WebRTC conferencing setup in
FreeSWITCH
Video conferencing setup is a superset of what we have seen for audio conferencing.
Actually both audio and video conferencing configurations are read by the same
mod_conference module.

Audio only callers can join video conferences, for example from PSTN (obviously
they will only be able to listen and speak to the conference, they will not send or
receive video streams). SIP callers can join with video, too, particularly from
softphones and communication apps. But the queens and kings of FreeSWITCH
videoconferences are the WebRTC clients, and between them the VERTO clients, that
are able to tap into a series of advanced interactive functionalities. The Empress, the
Khaleesi of VERTO clients is Verto Communicator, our flagship conferencing client
for WebRTC browsers. We'll learn more about her later.

A fully configured FreeSWITCH video conference, with all the special VERTO
features enabled, is also a perfectly legit audio conference, and if no caller ever joins
that has video capabilities, that conference is indistinguishable from an audio only
conference, no video streams will be created and no additional CPU will be used.

profiles additional video parameters
Inside "profile" sections in
/usr/local/freeswitch/autoload_configs/conference.conf.xml file, we can add many
parameters used specifically to control the video behavior of the conference and the
additional features available to VERTO clients. Some of them are described below,
for a complete list, and extended explanations, please consult our documentation
online on http://freeswitch.org/confluence, searching for "mod_conference".

http://freeswitch.org/confluence

video-mode
The mode to run video conferencing in. passthrough is non transcoded video follow
audio. transcode allows for better switching and multiple codecs. mux allows for
multiple parties on the video canvas at the same time. Allowed values: mux,
transcode, passthrough. Passthrough is obviously the lightest on CPU

Parameter syntax: <param name="video-mode" value="mux"/>

Default: passthrough

video-layout-name
The layout name from conference_layouts.conf.xml or group prefixed by "group:".
Setting this setting will enable the video mux. Not setting this will switch video
presentation based on floor.

Value can be in the form of "layout-name" or group:"group-name" (eg, group name
must be preceded by "group:")

Parameter syntax: <param name="video-layout-name" value="2x2"/>

video-canvas-size
Pixel dimensions of the video mux canvas.

Value must be in the form of "integer"x"integer"

Parameter syntax: <param name="video-canvas-size" value="1920x1080"/>

video-no-video-avatar
Path to PNG file for members without video to display.

Parameter syntax: <param name="video-no-video-avatar"
value="/tmp/novideo.png"/>

video-mute-banner
Sets the video mute banner text, font, font size, font color, and background color for
the member. font_scale valid values 5-50, fg/bg hex color code, all settings besides
text are optional.

Value can be in the form of "layout-name" or group:"group-name" (eg, group name
must be preceded by "group:")

Parameter syntax: <param name="video-mute-banner" value="
{font_face=/path/to/font.ttf,font_scale=5,bg=#000000,fg=#FFFFFF}VIDEO
MUTED"/>

caller-controls additional video actions
vmute Video mute. Toggle video from this member into the conference
vmute on Disable video from this member into the conference
vmute off Enable video from this member into the conference
vmute snap Take a video snapshot for this user to be used when in vmute
vmute snapoff Discard the vmute video snapshot

member-flags additional video options
join-vid-floor Locks member as the video floor holder
no-minimize-encoding Bypass the video transcode minimizer and encode the
video individually for this member
vmute Enter conference video muted

conference-flags additional video
options

minimize-video-encoding Use a single video encoder per output codec
livearray-json-status activate transmission of a machine parseable live status
of conference participants

screen estate layouts
The XML file
/usr/local/freeswitch/conf/autoload_configs/conference_layouts.conf.xml contains
the additional configuration where are specified the different ways to organize and
populate the screen real estate during video conferences.

The moderator can change a video conference layout dynamically, during the
conference, to adapt it to changing situations: during presentations you may want to
have a little video stream of the presenter's face superimposed ("overlapped") to the
screen she is sharing, so the effect is a little talking head as a picture-in-picture over
the PowerPoint slides.

Layouts are defined by a name, the coordinates that divide the screen into areas, and
the proportion the video stream will be scaled for each area. All numbers, both of
coordinates and of scaling factors, are in the range 0-360 and proportional to the
canvas. So, a layout that divides the screen real estate into 3 rows of 3 equally sized
areas (eg, a 3x3 disposition) will work the same both with a canvas of 1920x1080
and with a canvas of 800x600.

<layout name="3x3">
<image x="0" y="0" scale="120"/>
<image x="120" y="0" scale="120"/>
<image x="240" y="0" scale="120"/>
<image x="0" y="120" scale="120"/>
<image x="120" y="120" scale="120"/>
<image x="240" y="120" scale="120"/>
<image x="0" y="240" scale="120"/>
<image x="120" y="240" scale="120"/>
<image x="240" y="240" scale="120"/>
</layout>

layout groups
Layouts can be grouped in named "groups". If you give to a conference the vid-layout
of "group:groupname", then FreeSWITCH will apply dinamically the group member
more apt to display all participants.

<group name="grid">
<layout>1x1</layout>
<layout>2x1</layout>
<layout>1x1+2x1</layout>
<layout>2x2</layout>
<layout>3x3</layout>
<layout>4x4</layout>
<layout>5x5</layout>
<layout>6x6</layout>
<layout>8x8</layout>
</group>

Using the group in this example, when the first caller joins the conference, layout 1x1
will be applied. Then, as more members join, the layout will be dynamically chosen
to accommodate all participants. When participants will grow from 36 to 37,
FreeSWITCH will change layout from "6x6" to "8x8". Yay, on a 1920x1080 screen
we can fit 64 conference participants live video streams!

FreeSWITCH conferencing operation
How to invoke conferences from dialplan? How to send an incoming call to join an
already running conference? How to originate calls that will join the callees in the
conference?
Also, conferences and video-conferences can be much more productive and
interesting if participants avoid to talk one on top of each other, if video follow who
is speaking, if a presenter is given possibility to show his screenshare or himself
talking depending of the moment (after a while, any slide can be boring).

In next sections we'll look at how to invoke and manage running conferences.

Conference Application (dialplan)
Callers reach conferences via the conference application, which is usually invoked
from the Dialplan or from the event socket via API calls. The general syntax for
connecting a caller to a conference is as follows:

<action application="conference" data="confname@profilename"/>

confname is an arbitrary name for this conference room, and profilename is the
profile to use from the conference configuration file (as specified earlier in this
chapter). All callers that are sent to the same confname@profilename will be in the
same room.

You can optionally pass specific parameters in to the conference by appending
+PIN+flags at the end of a conference profile name, as shown in the following code:

<action application="conference" data="confname@profilename+12345+flags{
mute|deaf|waste|moderator|vmute}"/>

If you want to pass flags, but don't want to require a PIN, then conference invocation
will be (note the double "+" sign):

<action application="conference" data="confname@profilename++flags{
mute|deaf|waste|moderator|vmute}"/>

Conferences are created on-demand when the first participant arrives in the bridge.
Upon creation, the settings from the active profile, along with the specified
conference PIN number, are recorded in memory with the conference. This is
important to note because changes you load into memory won't take effect on in-
progress conferences. For example, once a conference has been started with a PIN
number, any future participants who join the conference must specify the same PIN
number.

Conferences stay alive until the number of members drops to zero.

The following are some examples of values to specify in the data section when
bridging a call to a conference:

Action data Description

confname Profile is "default", no flags or PIN

confname+1234 Profile is "default", PIN is 1234

confname@profilename+1234 Profile is "default", PIN is 1234, no flags

confname@profilename++flags{mute|waste} Profile is "default", multiple flags, no PIN

confname+1234+flags{mute|waste|vmute} Profile is "default", multiple flags with PIN

Note that while some parameters are optional, their order is very important.

Controlling active conferences
A number of CLI and API commands exists for controlling an active conference. The
most commonly used commands involve kicking members, adjusting volumes, adding
a text banner to a participant video stream (eg, stating its name and role) and
originating calls (to add people to a conference).

In the picture are shown all the API commands available from FreeSWITCH console
when we hit the TAB key twice after typing the word "conference" (first TAB will
list the running conferences, just one, in our case; second TAB will show the
available commands to interact with this conference). For example, you can change
layout with:

conference 3500-lab.opentelecomsolutions.com vid-layout 3x3

or apply a caption on the bottom of video stream coming from participant with
member_id "2" (note the single quote character to delimit the banner string):

conference 3500-lab.opentelecomsolutions.com vid-banner 2 'Giovanni Maruzzelli <gmaruzz@OpenTelecom.IT>'

For extended explanations, please consult our documentation online on http://freeswitch.or
g/confluence, searching for "mod_conference".

http://freeswitch.org/confluence

Calling outbound into the conference
FreeSWITCH can originate outbound calls to connect callees to a conference. This
can be done with the application "conference_set_auto_outcall" and its helper
channel variables.

But is probably much more useful when done by FreeSWITCH administrator (or the
conference moderator, operating via some script) interactively in real time from
fs_cli:

conference 3500-lab.opentelecomsolutions.com bgdial user/1010 +12125551212 weekly_conference

Verto Communicator and Video-
WebRTC Conferencing
Verto Communicator is our flagship WebRTC client developed exactly to participate,
manage and moderate FreeSWITCH videoconferencies. Under the slick User
Interface lies all the power of VERTO protocol. VERTO, a protocol designed to be
easy of use for web developers, is based on JSON. JSON + WebSockets means a
bidirectional capability of real time information exchange. This is only evident when
you see Verto Communicator (VC) updating its chat and participants arrays, or when
you see the icons of each single participant to blink when she talk, and its
microphone and camera change color when she mutes herself.

VC allows the participants of taking care of their own settings like outbound and
inbound volume, audio mute, video mute, chosing which microphone and webcam to
use (important when you have a laptop that doubles as workstation, lying closed on
the side of the desk attached to a gorgeous USB 3.0 powered hub, and a displayport
triplicator).

And VC exposes in its GUI all the administrators' tools: kicking, muting, vmuting,
giving floor, adding captions, taking snapshot images, recording session, playing
audio/video files, changing layouts, all with just a mouse click.

For installation of the various components needed to provide WebRTC
videoconferences, and VC itself, please refer to the installation paragraphs of
"WebRTC, SIP and Verto" in this book.

settings
When you first connect to a Verto Communicator page, you will be presented with a
little window that asks you your name (so it can later appear in the conference
participant roster list and in the chat window). If you instead click on the "setting"
link, that window expands, and you can enter all connection details, included to
which server connect, authorization username, and password.

You will then be offered the possibility to choose which multimedia sources to use,
as in which microfone, camera and speakers (you may easily have tree audio sources
to choose from: laptop built-in, USB soundcard, microphone inside the webcam)

Now you're setup and logged in, you may dial:

participants list
After joining the conference, you'll see on the right the member roster with interactive
avatars, and live icons.

participant GUI commands and chat
Clicking on "chat" tab, you'll see the real time synched chat window, while if you
hover on the main window, the user commands will apper as On Screen Display :
microphone toggle, webcam toggle, fullscreen, screen share, audio output selection,
and dialpad.

moderator GUI commands

If you are connected as one of the conference moderators, then you have much more
controls on screen: in addition to the participant controls, moderators have the
recording/stop recording, the play media/stop playing, the take a snapshot image and
a dropdown menu for changing screen layout.

Also, conference moderators can click on the icon on the right to toggle audio and
video to each participant, add a caption (like name and role), give the floor (the
conference focus), etc

screen sharing
Sharing your own entire screen, or just one application window, is very easy. Just
click on the "screenshare" participant control, and choose from the popup what you
want to share. I decided to share the LibreOffice Writer window where I'm writing
this chapter. Also, I changed the conference layout to "overlaps", and now conference
participants are little picture-in-picture live videos superimposed to the live video
from my application window (which can be a slide show, a spreadsheet, a terminal,
whatever).

Summary
In this chapter we learned about the conferencing capabilities of FreeSWITCH. After
a brief overview of audio and video conferencing techniques, we saw how they are
supported by FreeSWITCH.

We learned how to setup audio conferences in FreeSWITCH, with their multiple
features. And how to extend that setup to provide the newest video capabilities, and
WebRTC interactions.

Then we saw how to manage and operate a conference from FreeSWITCH console,
how to call into it from dialplan, and how to call out from it interactively.

We closed this chapter with a visual presentation of Verto Communicator features and
functionalities for both conference participants and moderators.

We're ready to implement leading edge conferencing services for our users!

In next chapter we'll learn all about the dreaded enemy of telco implementors: NAT,
and how FreeSWITCH has been designed to pass through it.

Handling NAT
NAT (Network Address Translation) is the most notable legacy of a very different
time: when the Internet was not widely adopted, and dinosaurs were roaming free. At
that time, like... 20 year ago?, there was plenty of available Internet Addresses (was
normal to be assigned a class C network with 254 public Internet routable addresses.
I personally got two class-C, for iol.it and for matrice.it) and no one had any idea the
ipv4 address pool will ever be exhausted. So, most machines on the Internet were
there with their own public address. Also, no problems with security, encryption, and
all that. There was no money on the Internet, so no crime.

Telecommunication was a matter of having the best way to connect two public hosts
peer-to-peer. SIP was designed with that in mind, at beginning. So, it was completely
out of its natural environment when in few years most of the hosts using VoIP would
find themselves behind a firewall and a NAT. Different IP addresses if you see the
machine from inside of the private network, or from the Internet side. Those
addresses are automatically translated into each other at the lowest level level of
data packets (0s and 1s) by the routers or the "modems". Problem is, SIP needs a text
part (SDP) where data are written before going out in the Internet. Those written
down text addresses describe the media streams. And text is not translated by routers
(and when routers try, as in ALG, they make even more damages). That's why so
many times you end up with a call that rings, your peer can answer, but there is no
audio, or no video, or one way only, or it drops after 30 seconds (timeout).

In this chapter we will discuss:

A brief introduction to NAT, including a little history
The four pitfalls of NAT
The settings in FreeSWITCH that help overcome NAT
Troubleshooting tips

A brief introduction to NAT
A good way to explain NAT to someone who could absolutely care less about
techno-babble would be with an analogy. Think of a giant office building and its
mailroom. An employee on the 10th floor sends a package to you by dropping it off at
the mailroom on the ground floor. The package is passed on to the Postal service and
it arrives at your house. The return address on the package is actually the address of
the entire office building and not the tiny office on the 10th floor. Now say you need
to return the package. You put it back through the Postal system and it arrives at the
building and the employees in the mailroom must figure out where to deliver the
package by mapping your name or office number to the location in the building, and
then they take it back up to the employee on the 10th floor. The mailroom is like a
NAT router because it proxies the mail between the actual Postal system and the one
inside the building. The offices are like the LAN addresses because they do not have
any direct access to the mail. What if the name of the office sending the message is
messed up or not present on the package and the mailroom employees have no idea
which office to send the package to when you return it? This would be a NAT
problem and the package may end up getting lost just like your calls. Perhaps you get
the package and notice it's missing the office name or number but you know which
office sent it because you were expecting this package and then when you return it
you write the office number on the label? This would be an ANTI-NAT feature
created by you.

When it comes to networking, NAT is basically a technique where an entire LAN or
Local Area Network (meaning a network that is not directly connected to the Internet)
is connected to a device that does have access to the Internet and uses a single public
IP address (meaning an IP that is directly connected to the Internet) to provide
Internet connectivity to the entire LAN. It's used primarily to reduce the number of
public IP addresses that are necessary since we are running out of them fast. We
started out with four billion of them and they are all basically used up at the time of
writing this.

Putting your local network behind NAT has a side effect of constantly protecting your
computers and other devices from attack since they are not visible on the Internet.
Experts do not feel this is the ultimate solution for security because there are still
ways to compromise devices behind NAT but consider it a bonus protection when
used together with other good security practices. By the way, you'll learn more about
security when it comes to VoIP in Chapter 15, VoIP Security.

Understanding the evolution of NAT
The demand for IPv4 addresses has grown over the years since the Internet has
evolved. As the demand increased, the pool of available addresses has been depleted
and there is a shortage of available IPv4 addresses. Two major attempts to deal with
this situation have become popular over time - NAT and IPv6.

NAT has become a fairly popular way to take a small subset of public IP addresses
and utilize them across a larger number of devices on a network. NAT took off in the
1990s as a way to mitigate the IP starvation problem until IPv6 took off, but now it's
so popular that many people don't want to let go of it. Meanwhile, system
administrators are forced to embrace the looming legacy of NAT and make sure that
we can tolerate it across our software and equipment due to popularity.

A new standard for IP addresses called IPv6 can solve the IP starvation problem by
adding so many public IP addresses that we can have trillions of IP addresses for
every square inch of the surface area of the Earth. We could give a block of IPs, the
size of the entire Internet as we know it today, to every creature on the planet and not
even put a dent in the total available pool of IPv6 addresses. The IPv6 specification
was published in 1998 and has been slowly gaining momentum. IPv6 still takes a
back seat to the more widely used IPv4 that was adopted in the 1970s. Most likely,
even if we fully adopt IPv6, NAT still won't go away for some time.

The key problem we are trying to solve with NAT and VoIP is that since a device
(phone) behind NAT is not visible to the Internet, it becomes difficult to contact that
device when you want to call it. The next big problem is that some protocols, such as
SIP, may break when used over NAT.

The four pitfalls of NAT
There are four basic pitfalls of NAT that everyone should learn. Understand these
pitfalls and you will be well-equipped to handle the NAT scenarios that you'll no
doubt face:

NAT can be there even when you don't know about it. The Internet does not have
to be involved.
Any two techniques to defeat NAT used together will cancel each other out.
Some devices use a SIP ALG (Application Layer Gateway) to defeat NAT. They
even do that without telling you.
NAT correction techniques (like ALG) can falsely identify a situation and
actually make things even worse.

Become familiar with these pitfalls. They are referenced frequently throughout this
chapter.

Let's discuss each of these in more detail:

NAT can be there even when you don't know it. The Internet does not have
to be involved: If you are using home Internet service from your cable or
telephone company, or even in some cases a business-class service, they may on
occasion use NAT to put all of their customers in a separate network and then
translate that network to other segments in their infrastructure. This could
happen not just once but multiple times between your device and its destination
and you have no control over it. This can cause some real problems for people
trying to use VoIP. Most VoIP protocols only have basic provisions for dealing
with NAT and often fall short. This is probably the first problem that most
home-users will encounter when trying to use VoIP from their homes. NAT can
also be used in this fashion inside a LAN connecting multiple LANs without
actually reaching the Internet. Getting on the Internet is just the most popular use
for NAT but it can be used just as well to isolate one LAN from another. If
you're asking your friendly neighborhood VoIP guru for help and he suggests a
NAT problem, don't count it out just because you are not using the Internet or
because you don't know NAT is there.
Any two techniques to defeat NAT used together will cancel each other out:
This one is tricky and a very popular issue among VoIP users. The best way to
visualize it is to picture a game of Othello. Whenever you make a move to block
the NAT it flips everything around. If you make a counter move, it flips it all
back. This might even be happening more than you think (see the first pitfall). As
long as it's an odd number of flips and you started out with a non-working

situation you should end up okay, but you should make it a point to do only the
most minimal modifications possible to avoid confusion and pain. If your phone
supports NAT features and you enable them and also enable them on
FreeSWITCH, you may end up with one-way or no audio. What's even more
confusing is that there are so many ways to cancel out NAT. Some require only
changes on your phone behind the NAT, while some require changes only on
FreeSWITCH and some require a change on both ends.
Some devices use a SIP ALG to defeat NAT: "Arrrghh, curse you SIP ALG!".
We've heard that being exclaimed countless times over IRC or on a community
conference call. ALGs mean well but they usually mess things up real bad. They
are like a combination of the first two pitfalls because they are usually
implemented inside your provider or in your network router and enabled by
default without your knowledge. They do the worst and last resort of all the
ANTI-NAT techniques that is modifying the text of SIP packets as they pass
through your router. This can lead to misbehaviors and misrouted traffic that
will present itself to you as a complete mystery. Heed my words. If you find
yourself uttering the phrase, "This makes absolutely no sense", the first thing you
should check is to see if you are under the evil spell of a SIP ALG. In many
cases, simply turning off a SIP ALG resolves NAT-related issues.
NAT correction techniques can falsely identify a situation and actually
make things even worse: It helps to understand your surroundings at least
enough to know if you actually need to enable ANTI-NAT features. Some SIP
agents make use of the more arcane aspects of SIP and do really fancy things
with the network addresses in the packet. For those of you unfamiliar with SIP,
yes I know it's all arcane but we need to keep things in perspective. So the
problem is, completely legitimate packets that are just doing things in a way that
resemble NAT can trigger some of the features we use to detect NAT. So you
need to be careful, especially with Cisco phones that are notorious for being
bad behind NAT and subject to false detection at the same time.

Demystifying NAT settings in
FreeSWITCH
Now that we have reviewed the common pitfalls of NAT, we can go over the various
types of NAT situations that you may encounter. Basically you will probably be in a
situation where either your phone or PBX is behind NAT talking to a SIP endpoint
that is not behind NAT (or vice versa). Even worse, you might end up in the dreaded
double-NAT situation where both sides of a connection are independently behind
their own individual NAT routers at the same time.

A double-NAT scenario looks like the following diagram:

Let's start with a sane, yet challenging situation where you have a phone at your house
that can't understand NAT and you want to register to your FreeSWITCH server that
is on the public Internet. The good news is that this situation is already covered for
you by the example FreeSWITCH demo configuration. The core of FreeSWITCH has
a feature called ACL (Access Control Lists). An ACL lets you create lists of
network addresses and control access to things depending on whether or not a
particular device is originating from an address defined by the ACL. There is equal
value in determining if an address matches or does not match a list and from there
deciding if being (or not being) on the list is a good or bad thing.

This feature makes it possible to allow certain devices to authenticate based on their
IP address or you can make a list of enemy devices so you can completely block
anyone who is on the list. In this case we will use the ACL to determine if a device is
behind NAT or not and decide what to do from there.

A device behind NAT is likely to have an IP address within a special range called
RFC-1918. The easiest explanation for this is that there is a special set of IP
addresses that never lead to the Internet because they are reserved for private use on
LANs. This is basically any IP address that starts with 192.168.x.x, 172.16.x.x
through 172.31.x.x, or 10.x.x.x. We'll just call them LAN addresses from now on.
People call them also as per the RFC, eg "rfc1918 addresses".

Because these addresses are private, there can be endless networks using the same

exact IP addresses internally but they can never connect to each other. Now when you
connect these networks to a NAT router, all the phones on these private networks will
be able to reach your FreeSWITCH server. The routers work by keeping track of all
the traffic coming from the LAN addresses and sending it to the Internet as if it was
coming from the public Internet IP on the router. Then, when the destination on the
Internet sends a response to the NAT router, it uses the mapping to deliver the packet
back to the sender. The source address that FreeSWITCH sees the traffic originating
from may never be the same and this makes it very difficult to send an incoming call
to the phone. This is where the ACL comes in handy.

FreeSWITCH has a configuration parameter for mod_sofia profiles called apply-
nat-acl. This parameter can be used more than once in the same profile and expects
the name of an ACL list. When mod_sofia gets SIP REGISTER or INVITE packets, it
looks at the contact address and checks the IP referenced in the Contact header
against the specified ACL. If there is a match, it concludes that the device must be
behind NAT. It's difficult to tell which IPs represent devices behind NAT but we have
a bit of a clue. Remember RFC-1918 or LAN addresses as we called them? Since it's
a defined range of IP addresses, we can conclude that if you are coming from one of
these addresses then you are calling from behind NAT.

Be careful! Don't forget the fourth pitfall, it's not 100 percent safe to assume every
device coming from a LAN address is behind NAT. This may not always be the
case but more times than not it is. It's just good to be wary. One case where it may
not be true is when FreeSWITCH also has a LAN address because it's behind NAT
too. Well, we have a special ACL that is created for you when FreeSWITCH starts,
called nat.auto. This special ACL already contains the entire RFC-1918 address
space but it also checks the machine's local network address and excludes that
address space so you won't get any false positives when it gets calls from phones
on the same LAN as FreeSWITCH. At the same time this ACL can detect a phone
that is actually in a remote location behind NAT. FreeSWITCH comes pre-
configured with apply-nat-acl set to nat.auto and can correct most typical device
behind NAT versus FreeSWITCH on the public Internet situations.

How do we solve the problem? Basically, when the phone registers from behind
NAT and it's detected, we save the IP and port that we saw the register originate from
and store it in the internal database alongside the unreachable LAN address that the
unsuspecting phone has provided us. When we need to contact this phone, we consult
our database and determine the external IP:port to which the message should be sent.
The SIP headers will still have the internal IP:port values that the remote phone is
expecting to see. We also tell the phone to register more frequently so that the
mapping stays open, since most NAT routers only hold a translation path open for a
short period of time. This technique is especially effective in avoiding the other part

of the fourth pitfall because we never modified the intended address at all like the
evil ALG.

Here is an example of output from the FreeSWITCH CLI (Command Line Interface).
The client is a softphone behind NAT registering to an instance of FreeSWITCH
running on a public IP. Notice the Contact field is using the IP 10.0.1.85 that is a LAN
address. The status shows that UDP-NAT was detected thanks to the nat.auto ACL
list. The trick comes in at the end of the Contact. The extra parameters fs_nat and
fs_path are appended to the Contact address of the phone registration so we can
figure out how to circumnavigate the NAT. Consider the following:

fs_nat=yes
fs_path=sip%3A1006%40206.22.109.244%3A43425%3Brinstance%3Db67dbafc
 9baa9465%3Btransport%3Dudp.

The fs_path field is a SIP URI (Uniform Resource Identifier) that actually will lead
back to the phone through NAT. It's URL-encoded, so special characters in the URI
do not conflict with the real contact. The decoded version of this field is:

sip:1006@206.22.109.244:43425;rinstance=b67dbafc9baa9465;transport=udp

So even though when we call the phone we will send the INVITE network packet to
206.22.109.244:43425, we will keep it addressed (in the text of the packet) to
10.0.1.85:5060 and that is exactly where it will end up once the NAT translation
takes place and the remote router delivers it to the phone. You can see the complete
set of registration information using the sofia status profile internal reg command.
The following is an example:

freeswitch@myhost> sofia status profile internal reg
Registrations:
==
Call-ID: ZWU1MjdiZTI2MTg2MmVhNTc5NTk3MDY5YjFmOTVkMTU.
User: 1006@myhost.freeswitch.org
Contact: "TEST"<sip:1006@10.0.1.85:10118;rinstance=b67dbafc9baa9465;transport=udp;fs_nat=yes;fs_path=sip%3A1006%40184.58.189.244%3A43425%3Brinstance%3Db67dbafc9baa9465%3Btransport%3Dudp>
Agent: eyeBeam release 1104g stamp 54685
Status: Registered(UDP-NAT)(unknown) EXP(2012-12-09 10:18:07) EXPSECS(88)
Host: myhost
IP: 206.22.109.244
Port: 43425
Auth-User: 1006
Auth-Realm: myhost.freeswitch.org
MWI-Account: 1006@myhost.freeswitch.org
Total items returned: 1
==

Notice that the Contact: header contains both the fs_nat and fs_path parameters. Any
SIP traffic that FreeSWITCH needs to send to user 1006 will use the URI specified in
the fs_path parameter.

Following we have another example, with a more modern client and in the popular
situation where both the client and the server are behind different NATs. In this case

the client is able to correct its own address using the data sent to him by
FreeSWITCH.

Our Linphone send the following as first REGISTER SIP packet:

REGISTER sip:lab.opentelecomsolutions.com SIP/2.0
Via: SIP/2.0/UDP 192.168.1.200:5060;branch=z9hG4bK.znT45Avvt;rport
From: "Sara"<sip:1001@lab.opentelecomsolutions.com>;tag=cfurzFSzg
To: "Sara"<sip:1001@lab.opentelecomsolutions.com>
CSeq: 20 REGISTER
Call-ID: kMq3GlIAVx
Max-Forwards: 70
Supported: replaces, outbound
Accept: application/sdp
Accept: text/plain
Accept: application/vnd.gsma.rcs-ft-http+xml
Contact: <sip:1001@192.168.1.200;transport=udp>;+sip.instance="<urn:uuid:ba010749-6214-4a35-bfb1-ac9c9181c24d>"
Expires: 3600
User-Agent: Linphone/3.9.1 (belle-sip/1.4.2)

You see in the original "Contact" header the address is 192.168.1.200, the private
LAN address. But then, after some packet exchanges needed to complete the SIP
registration, Linphone sends FreeSWITCH the right "Contact", and we end up with:

Making media flow
Now that the SIP messages are flowing properly from FreeSWITCH to the phone,
what about the media? A phone call or a videocall is not very eventful if you can't
even hear each other, right? We had many problems where the calls would set up
properly until the point where NAT would strike the RTP packets that provide the
actual media of the call, rendering the call with one-way-audio or even no-way-
audio in some cases. In light of this injustice, we created a separate feature that is
always enabled and only needs to be manually disabled in a very few set of cases
inspired by the fourth pitfall. This feature is called RTP auto-adjust. The reason we
need it is because when the phone tries to call us from behind NAT, it will naively
advertise its unreachable LAN private address to FreeSWITCH as to where to send
the media streams (eg the address written in the text of SDP).

We could guess that since the device is behind NAT, we should really send the audio
to the same address that we saved from the SIP message. But that is not always the
case since various types of NAT have restrictions and the port mappings sometimes
don't exist until the device behind NAT has actually sent a packet. So, in reality we
may have no idea whatsoever as to how to successfully get audio flowing to the
phone. Thanks to the auto-adjust feature, we still have a fighting chance. As long as
we give the phone a valid address where it can send us audio, we can wait until it
sends us some packets and use the originating address to determine where to send
the audio back. This is not 100 percent guaranteed, as we know, but it's very
effective in an otherwise hopeless situation. Just to be safe we only allow this
magical adjustment to happen right at the beginning of the call otherwise evildoers
may try to steal people's audio streams.

As previously mentioned, this RTP auto-adjust is pretty much enabled by default and
will turn on automatically. The way in which you can tell that it is working is by
looking for a log message like the one that follows. The message shows you the
original media destination and the new one that was detected. This log line prints at
the beginning of any call where auto-adjust has triggered.

If you do have one of the two percent of cases where this feature triggers the fourth
pitfall and actually breaks things for you, then all you need to do is add this
parameter to your SIP profile:

<param name="disable-rtp-auto-adjust" value="true"/>

Otherwise you can also disable it on a per-call basis by setting the channel variable
rtp_auto_adjust=false at some point before the media stream has started.

Advanced options and settings
Now that we kind of understand how it works, we can look at other ways to trigger
the NAT detection. In some cases, the ACL is not enough because maybe a sneaky
ALG has messed up the packet or maybe the traffic is passing over a proxy or the
phone may think it's handling the NAT case itself but it's not doing it quite right.

We have another option that is not enabled by default because it laughs in the face of
the fourth pitfall and basically thinks almost anything slightly out of the ordinary is
NAT. This parameter is dangerous but effective in cases where you have no
other choice. The name of the parameter is aggressive-nat-detection and setting it to true
in your SIP profile will enable it for all traffic. Basically it looks at the SIP packets
and if it sees a variety of IP addresses in various headers, it uses logical deduction to
figure out which one is the source address. From there it does the same thing that the
ACL based one does, only it may not always be the source address that it writes into
the database.

<param name="aggressive-nat-detection" value="true"/>

The following diagram illustrates such a case:

FreeSWITCH has a family of parameters we refer to as "No Device Left Behind"
or NDLB. These parameters denote situations where we completely mimic or accept
a flaw in a device and pretend everything is peachy or make provisions for the
device so it can still work despite the fact that we are utterly offended that we
actually had to make it work by modifying the code. Those are especially useful
when dealing with old clients that are not completely conform to SIP specifications.

One such parameter that is particularly effective in the battle against NAT is called
force-rport. The purpose of the rport attribute in SIP is a minimal attempt to conquer
NAT by appending ;rport to the request. When FreeSWITCH sees this attribute, it
will respond in kind with a rport=host:ip attribute so the phone will realize it's
behind NAT. The funny thing is, some phones can react properly when they see the

rport in the response but never request it. The force-rport parameter causes
FreeSWITCH to pretend that every device we talk to has supplied an rport parameter
so we respond as if they did and hence unlock the functionality that would otherwise
be unobtainable.

This parameter is also not enabled by default, as is the case for most NDLB options.
It also opens up vulnerability to the fourth pitfall, since it can break many devices.
You can either set it to true to always assume rport or set it to safe to only enable it
for devices where we know it's required to make things work. You can also set it to
client-only or server-only to only do it depending on the direction of the call but with
any luck you will never need those options.

FreeSWITCH behind NAT
We have covered some of the common cases where your phone is behind NAT talking
to FreeSWITCH who isn't. Now we can move on to cases where your local copy of
FreeSWITCH is behind NAT and talking to a SIP provider or another FreeSWITCH
server on the public Internet. Luckily, we have also dressed up the example
configuration to have the best chance to work under these NAT circumstances. We
recommend you try the unaltered example configuration on a test instance of
FreeSWITCH every so often just to see if there are any more new default behaviors
you may be missing out on.

FreeSWITCH speaks to the router
FreeSWITCH supports two client-side NAT-busting protocols by default called
NAT-PMP and UPnP. Both of these protocols use slightly different methods but the
basic gist is the same.

Both methods use a network protocol to discover your NAT router and communicate
with it, so rather than making the NAT mappings on-the-fly, it asks the router to open
a port and actually learns the details of the port mapping, so when FreeSWITCH
talks to another server it's putting the correct information in the packets for both the
SIP and the media. That is cool! Beware though, now we're opening the door to the
second, third, and fourth pitfalls.

We have now disguised the fact that we are behind NAT so the other side cannot
detect it. An ALG might be hiding in our midst and mess with the packet thinking that
it still needs to when it doesn't. The other side might be using something similar to
aggressive NAT detection and spring a double anti-NAT trap. The great thing is, if
you have some very strict NAT routers or firewalls, this feature will not only solve
the address mapping dilemma, but also unlock otherwise blocked ports held tight by
the firewall.

FreeSWITCH behind NAT, leaving the
router alone
There are a set of parameters in the SIP profile called ext-sip-ip and ext-rtp-ip.
These parameters are used to supply information about how to behave in regards to
external IP addresses. The default configuration defines both of these parameters with
auto-nat. This is used together with the NAT router control feature we were just
talking about to just do the right thing. Some of us will not have a router that supports
NAT-PMP or UPnP, or worse, it will claim to support one or the other and then not
work at all because either it's inherently broken or due to some other deadly
combination of the pitfalls.

We can disable this functionality when we start FreeSWITCH by supplying the -nonat
command-line option. With this option disabled, we still have some tricks up our
sleeve. You can put an IP address in either field when you already know what it is,
for example when you have a static external IP address. Better yet, you can set it
to autonat:x.x.x.x (where x.x.x.x should be replaced with your public IP) so it uses
your known external IP and still does a bit of dynamic magic.

ext-sip-ip="auto-nat:194.20.24.1"
ext-rtp-ip="auto-nat:194.20.24.1"

Additional ways to set the external
addresses
You can make use of dynamic DNS or STUN by setting it to host:my.domain.com or
stun:stun.myhost.com (where my.domain.com or stun.myhost.com are your own
dynamic domain or STUN server, respectively) to do lookups as needed. This has
disadvantages because it can slow things down or stop working. As usual we have
already shipped the best options by default but you still deserve to know about the
other options. If you do control your own routers, you can also create permanent NAT
mappings that route specific traffic right to your FreeSWITCH server or phones, and
the ext-sip-ip and ext-rtp-ip can come in very handy in that case. Also, if you have the
means, you could use a VPN to route two independent networks to each other when
both are behind NAT, assuming you can actually control the router at both ends.

Other creative uses of FreeSWITCH in
a NAT situation
FreeSWITCH can be used to conquer NAT by simply wedging it between devices.
You can configure a local FreeSWITCH and register all of your phones to it, then
register that instance of FreeSWITCH to the SIP provider on behalf of all of your
phones, carving a hole right through the NAT and keeping everyone happy. Also, you
can set up FreeSWITCH on a public IP somewhere on the Internet, then register all of
your phones or local FreeSWITCH instances from multiple locations to that common
server, so even if both locations are behind NAT, they can still make calls between
sites without a problem.

NAT and WebRTC (SOLVED)
OK, WebRTC has been defined barely yesterday, actually is being defined right now.
It's completely unencumbered by legacy shortcomings, particularly when dealing with
NAT. So let's say using WebRTC as transport solves all NAT problems.

You define your ext-rtp-ip and ext-sip-ip in SIP profiles, then your ext-rtp-ip in
verto.conf.xml, and you're all set.

The magic of ICE, used by default by all WebRTC clients to determine how to
connect, and implemented on FreeSWITCH side too, is almost sure to guarantee a
perfect flow of signaling and media.

If you have a very strange situation, for example you want to use WebRTC inside
LANs without using public addresses or DNS names, then you will need to
implement your own ICE/STUN server and configure your WebRTC clients to
use that server(s). But if you have such a project, you probably already know you
need your ICE infrastructure.

Conclusion
We wish you well on your journey into the world of NAT! Hopefully, this chapter
will prove useful when you are stuck or prepare you in advance for a battle with an
ALG .That would really be awful! If you memorize everything in this chapter and
somehow still have problems, you can always come online and ask other
FreeSWITCH community members for help. One final word of wisdom that can make
you look smart is that if next time you notice someone complaining that their calls fail
30 seconds after they start, then yes, it's a NAT problem. This has been shown in the
following diagram:

In some cases FreeSWITCH can't fix the problem and you will need to fix or replace
the NAT device.

Summary
In this chapter, we've identified the pitfalls of NAT and if even one reader is spared
the searing pain caused by a first encounter with an ALG or NAT router then our
journey into madness was not in vain.

We've also covered most of the options you have in FreeSWITCH to mitigate NAT-
related problems. Before we move on to VoIP security, I'll leave you with a few more
tips so hopefully you will get things working even when plagued by NAT. The
following are the tips you should remember:

Learn the four pitfalls of NAT and keep your eyes open for them
It's very easy to get distracted and fall prey to one of the pitfalls. If you notice
it's taking too long, start over and make sure that you haven't made a mistake
somewhere that is leading you astray.
Try to make the least changes necessary to get NAT working
The more you mess with NAT settings, the easier it is to do something wrong or
make things incompatible. It's very easy to get one end working and break the
other and go back and forth for hours at the mercy of the second pitfall.
If you have access to your own router, configure it to make conditions as
favorable as possible for NAT
The best way to make things simple is to tune your surroundings so you have the
ideal environment. Choose basic NAT settings and stick with defaults that are
usually tuned to working the best for the majority of cases.

In our next chapter we will change our focus from overcoming NAT issue and look at
ways to improve VoIP security.

VoIP Security
VoIP Security is an increasingly important topic for protecting your FreeSWITCH
system. Protection strategies include both proactive and defensive technologies.
Proactive technologies in FreeSWITCH include multiple types of encryption for both
SIP and RTP communication which discourages tampering or eavesdropping with
phone calls. Defensive technologies in FreeSWITCH, when combined with other
open source tools, can block suspicious or malicious transmissions from unknown
sources and prevent abuse or fraud. The importance of combining FreeSWITCH
capabilities with generally available open source VoIP tools is essential when
running in a production environment.

This chapter is divided into the following four sub-sections:

Network level protection
Protecting signaling
Protecting audio
Protecting passwords

Network level protection
Most malicious individuals utilize open network ports to break into VoIP systems.
They look for anything from weak passwords to known software bugs and attempt to
exploit those setups to control the configuration and routing of a phone system. The
general goal is to commit fraud, eavesdrop on calls, or steal information (such as
voicemail messages).

Since the network is the entry point to your system, it's important to pay close
attention to how your network is setup and take advantage of some of the functionality
within FreeSWITCH to secure your system further.

Separating interfaces and restricting
traffic
SIP is a technology that is commonly targeted for abuse on the open Internet. In most
cases, malicious hackers will attempt to scan a range of IP addresses by sending UDP
packets on port 5060 and look for servers that respond. Once they find a server
which responds, they will attempt to brute-force common passwords or simply try to
dial out. In some cases they will also simply flood the server with fake registration
or other packets, crippling the system's ability to operate properly.

In average, a SIP server begins to be probed by hackers and script kiddies 30
minutes after is connected to the Internet. If you trace SIP packets, you'll see a lot of
REGISTER attempts, or INVITE attempts, by user-agents like SIPvicious, friendly-
scanner and SIPcli (and the ones that tries harder to disguise themselves as "normal"
phones). Yes, they're there with a purpose.

One of the most basic ways by which you can protect your FreeSWITCH system is by
separating your SIP interfaces and enforcing firewall or IPTables rules that are
different on each interface.

As you've learned in previous chapters, FreeSWITCH allows you to set up different
Sofia SIP interfaces so that you can send and receive SIP traffic via different IP
addresses and ports on the same system. What may not be obvious is that this setup is
useful for providing an extra layer of security and stability.

In terms of security, Sofia SIP profiles have default contexts for which they will route
inbound calls to. Those contexts can default to fairly restrictive dialplan contexts. If
you combine restrictive dialplan contexts with the relevant SIP profile, you are less
likely to allow someone to send fraudulent SIP traffic through your system, even if
you accidentally create a minor misconfiguration.

In addition, each Sofia SIP profile can have a different Access Control List (ACL).
In this way, you can put more stringent restrictions on public facing SIP profiles (IP
addresses) and looser restrictions on private IP addresses.

In terms of stability and performance, a little known fact about FreeSWITCH's design
is that each Sofia SIP interface is a separate thread. It means that by having
separate threads for each port and IP, you somewhat help in minimizing any
disruptions someone can cause to the system. While this is by no means a foolproof
way of protecting your system, any additional time you get to resolve an issue when

being attacked maliciously is helpful.

Sample setup - simple
In its most simple form, having a SIP profile where your carriers or Internet
Telephone Service Providers (ITSPs) reach you versus a SIP profile that your own
phones use is inherently beneficial. Most malicious activity starts with someone
discovering that you are accepting and responding to SIP traffic on port 5060 via a
port scan. At this point they will try various combinations of authentication methods
until they find one that works, or otherwise abuse that port. If you restrict access on
this IP and change the port to a random number and solely allow inbound calls
from carriers using ACLs, you immediately prevent anyone from gaining access to
your system, even if they have the right username and password.

The following diagram shows how people set up their FreeSWITCH system by
default:

In an alternate setup, you can utilize unique and unusual ports that make it harder for
hackers to find. In addition, you can use a firewall to restrict carriers to one port
while keeping the other port open for phones. This has been demonstrated in the
following diagram:

To achieve the previous example where carriers communicate via port 5678 and
phones communicate on port 23000, you could set up a configuration like the
following:

<profile name="incoming_from_pstn">

<settings>
<param name="auth-calls" value="true"/>
<param name="apply-inbound-acl" value="my_carriers"/>
<param name="context" value="inbound_call"/>
<param name="sip-port" value="5678"/>
... other settings here ...
</settings>
</profile>

In the previous Sofia profile, inbound calls from your carriers must come in on port
5678. When they hit this port, the my_carriers ACL will be applied, making sure only
carriers get through. If you make an error in your my_carriers ACL, no big deal - the
context the caller reaches is inbound_call and only allows for inbound calls, not
outbound. These are a fairly solid set of restrictions.

In addition, since you know only your carriers should be contacting you on port 5678,
you could modify your firewall or IPTables software firewall rules to allow traffic
on this port only from your carrier's IP addresses. This is a fairly fool proof
methodology for inbound access.

You would then create the following profile for your users to utilize:

<profile name="customer_access">
<settings>
<param name="auth-calls" value="true"/>
<param name="apply-inbound-acl" value="default_deny_list"/>
<param name="context" value="customer_call"/>
<param name="sip-port" value="23000"/>
... other settings here ...
</settings>
</profile>

In this Sofia SIP profile, calls that your customers make would need to hit SIP port
23000. This port requires authentication and uses an ACL called default_deny_list
which denies all traffic by default. This will force traffic to be authenticated,
meaning the user must provide a valid username and password to be able to utilize
the system. Once the user provides that information they will be sent to the
customer_call context where the calls will be processed.

Sample setup - complex
A more complex example indicates isolation of networks and assumes you have
network routing gear that allows you to split network access either physically
(separate network cables and routers) or via subnets or VLANs (see next section).

In the more complex setup, you would additionally use different IP addresses which,
via your operating system, are bound to different network cards. In addition to
mapping the SIP ports to different network interfaces, you would also map the event
socket and other FreeSWITCH ports to a management network interface.

To do this, you might set up two Sofia SIP profiles like the following:

<profile name="incoming_from_pstn">
<settings>
<param name="auth-calls" value="true"/>
<param name="apply-inbound-acl" value="my_carriers"/>
<param name="context" value="inbound_call"/>
<param name="sip-port" value="5678"/>
<param name="sip-ip" value="2.3.4.5"/>
... other settings here ...
</settings>
</profile>
<profile name="customer_access">
<settings>
<param name="auth-calls" value="true"/>
<param name="apply-inbound-acl" value="default_deny_list"/>
<param name="context" value="customer_call"/>
<param name="sip-port" value="23000"/>
<param name="sip-ip" value="212.222.33.111"/>
... other settings here ...
</settings>
</profile>

In the previous scenario, note carefully the sip-ip setting which differs for each
interface. One interface is 2.3.4.5 and the other is 212.222.33.111. FreeSWITCH
will attempt to utilize the network interface on the physical server which represents
the IP address that you have specified in the Sofia SIP profile. This allows you to use
different firewalls and network links for each interface powering your FreeSWITCH
system.

In this scenario, 2.3.4.5 could be an internal IP address that is not routable on the
public Internet and 212.222.33.111 could be a public IP address that is routable. The
IP address 212.222.33.111 would only have to be open to carriers unless you have
users with phones outside your local network. As an alternative for allowing phones,
you could allow your staff to VPN into your network. This would be the most
secure strategy possible.

The previous scenario can also be illustrated with the following diagram:

In the previous diagram, the phone talks on the Network Interface Card (NIC) on the
FreeSWITCH box assigned to 2.3.4.5, while the carrier talks to FreeSWITCH via the
NIC on 212.222.33.111.

VLANs
VLANs are a fantastic way to isolate phones from data communications on your
local network and if done correctly, they can improve call quality while preventing
malicious activity.

You don't want data traffic on your local LAN (someone copying a movie, or taking
a backup) to hog the bandwidth shared with phones and impair the quality of
voice/video calls.

VLANs are often overlooked as optional but in fact, a lot of damage can be done by
having phones on the same network as computers. It is simple to identify the IP
address of a device and log in to it when they are on the same network. From there, it
is trivial to lift the SIP username and passwords of many phones. For example, if you
log in to an old Polycom phone, you can export the configuration which contains the
phone's credentials and view them in plain text. It is more challenging to do this when
a phone is on a private segment of the network.

In addition to manipulating a phone directly, VLANs prevent tools running on
computers from sending bogus information into the voice network. This includes
scenarios as simple as unauthorized softphones that are used to hijack an extension to
send bogus BYE messages causing calls to hang up intentionally when they should
have continued.

It's worth noting that VLANs are available on most networks as either port-based
tagging, where a specific physical port on a switch is part of a virtual LAN or
software-based tagging, where the network interface card or operating system tags
each packet with a specific virtual LAN number in the IP header.

Setting up VLANs is beyond the scope of this book. However it should be noted that
nearly all popular desk phone models and recent network gear support VLANs,
including both software and port-based VLAN tagging.

Intrusion detection
Detecting intruders attempting to gain access to the system or who are intentionally
creating a denial-of-service or similar type of disturbance can be a challenge. While
it may seem obvious what type of traffic would be considered unusual, there are edge
cases that must be considered when setting up rules for automatic detection and
blocking of hacking attempts.

Registration and call attempts
monitoring
Some tools overwhelm VoIP systems by sending fake authorization attempts to them
without ever responding to the challenge request that is used in SIP. One popular tool
is often referred to as friendly scanner or SIPvicious. These types of tools keep a
system busy handling bogus requests, overloading the system, making it difficult to
handle real requests, and so on. Another suspicious behavior can be detected from
someone trying to make long distance or international calls repeatedly within a short
time period.

FreeSWITCH provides the ability to log a warning when an attempt is made to utilize
credentials in the system (recognized or not). Programs such as Fail2Ban may then be
used to monitor the frequency in which this logline is produced. If the frequency hits
a threshold where the traffic is suspicious, the IP address causing the traffic can be
blocked for a period of time (or permanently). It is generally considered suspicious if
a large number of authorization attempts occurs from the same IP address within a
relatively short period of time.

To ensure that a warning is generated when FreeSWITCH receives an invalid
authentication attempt, you can modify your SIP profiles and include the following
setting:

<param name="log-auth-failures" value="true"/>

A log line will be generated for authentication attempts that looks as follows:

[WARNING] SIP auth challenge (REGISTER) on sofia profile 'customer_access' for
[user_rdkj7h@2600hz.com] from ip 184.106.157.100

These warnings will be counted automatically by Fail2Ban and when they hit a
configured threshold the IP address 184.106.157.100 will be blocked.

Fail2Ban
Fail2Ban is a third-party program that runs in the background and monitors logs.
When specific loglines (such as the authentication challenge line shown previously)
are seen a certain number of times, Fail2Ban takes an action. It can be programmed to
e-mail you with an alert or automatically use IPTables to block an offending IP
address after too many attempts occur within a certain period of time.

This book is not intended to be a complete guide for using Fail2Ban. However some
sample scripts are given later in the chapter.

To configure Fail2Ban you will need to create several files which instruct Fail2Ban
what to look for in your logs and what to do when it finds a match.

Fail2Ban default configuration has a folder where you can place filters. These filters
contain strings which can be used to match against your logs. You can have as many
filters as you want to look for different types of suspicious traffic in your logs. When
combined with FreeSWITCH's error log which shows invalid login attempts, this can
become a useful filter mechanism.

The second file, known as the jail configuration file applies the filters to rules such
as how often an error is allowed to occur and what action to take after that threshold
has been exceeded. The jail configuration file effectively specifies how to react
when a filter matches.

Filter configurations
Let's first review a filter configuration file. This file would typically be placed in
/etc/Fail2Ban/filter.d/ and named according to the particular filter you are looking
for. The file would contain a filter to look for failed authentication attempts. The
format is a standard regular expression. In this case we consider a failure in
FreeSWITCH anytime someone tries to register or make a call using invalid
credentials.

The fine people of Fail2Ban community maintains a configuration tailor made for this
usage with FreeSWITCH. Is available in latest version at their repository (https://github.
com/fail2ban/fail2ban/blob/master/config/filter.d/freeswitch.conf), save it as file
/etc/Fail2Ban/filter.d/freeswitch.conf. Relevant lines at the moment of this writing
are:

 # Enable "log-auth-failures" on each Sofia profile to monitor
 # <param name="log-auth-failures" value="true"/>
 # -- this requires a high enough loglevel on your logs to save these messages.
 #
 # In the fail2ban jail.local file for this filter set ignoreip to the internal
 # IP addresses on your LAN.
 #

 [Definition]

 failregex = ^\.\d+ \[WARNING\] sofia_reg\.c:\d+ SIP auth (failure|challenge) \((REGISTER|INVITE)\) on sofia profile \'[^']+\' for \[.*\] from ip <HOST>$
 ^\.\d+ \[WARNING\] sofia_reg\.c:\d+ Can't find user \[\d+@\d+\.\d+\.\d+\.\d+\] from <HOST>$

 ignoreregex =

 # Author: Rupa SChomaker, soapee01, Daniel Black
 # https://freeswitch.org/confluence/display/FREESWITCH/Fail2Ban
 # Thanks to Jim on mailing list of samples and guidance

This will watch the FreeSWITCH logs for failed REGISTER or INVITE messages.

https://github.com/fail2ban/fail2ban/blob/master/config/filter.d/freeswitch.conf

Jail configurations
Now, combine this filter with a jail entry which blocks an IP address if too many
failed INVITEs or REGISTERs are received within a certain period of time.

The /etc/jail.conf file may get overwritten when upgrading Fail2Ban. Create a
/etc/fail2ban/jail.local file with the following data in it, setting the correct path to
your freeswitch.log file (maybe yours is in
/usr/local/freeswitch/log/freeswitch.log), and adjust the sender email address to your
setup:

[freeswitch]
enabled = true
port = 5060,5061,5080,5081
filter = freeswitch
logpath = /var/log/freeswitch/freeswitch.log
action = iptables-allports[name=freeswitch, protocol=all]
sendmail-whois[name=FreeSwitch, dest=root, sender=fail2ban@example.org]
maxretry = 10
findtime = 60
bantime = 600
"ignoreip" can be an IP address, a CIDR mask or a DNS host
ignoreip = 127.0.0.1/8 192.168.2.0/24 192.168.1.0/24

The earlier settings indicate the use of freeswitch filter and after 10 failed INVITE or
REGISTER authorization attempts (maxretry) within a 60 second period, blocks the
IP address of the offender and send an alert mail. If the filter is met (meaning 10
failed INVITE or REGISTER authorization attempts occur) within a 60 seconds
period, the offending IP address will be banned in full for 600 seconds (ten minutes)
and an alert mail will be sent to the configured administrator address.

Do not lock the good guys out!
The Fail2Ban configuration must be tuned so that a large site is not accidentally
kicked offline just because they are coming back online, causing all their phones to
reregister at once. For example, if you have a rate limit Fail2Ban entry (eg a rule
about quantity of "good" traffic, as opposed to "failed attempts" numbers), you would
not want to set up Fail2Ban to block IP addresses if they happen to send 50
authentication requests in a 5 second period, because if the site has 50 phones and
their power goes out, when their power comes back on all phones will attempt to
register at once, resulting in them being banned. This is not the intent. Be careful in
what you judge a "Denial of Service" traffic pattern.

Care must be taken when setting up Fail2Ban to test for edge case scenarios like the
power outage scenario just described.

Encryption in non-WebRTC SIP:
Signaling and Media
Specific techniques to apply encryption has been developed especially for "classic",
or "normal", SIP (as opposed to SIP over WebRTC, see later).

SIP encryption is based on two concepts - encrypting signaling and encrypting media
(audio/video) communication. Like any standard encryption mechanism, SIP
encryption utilizes standard cryptography libraries and involves key exchanges and
password negotiation to securely transmit and receive information. The main
encryption algorithms used in SIP (which are detailed later) are very similar to SSL
over the web and key exchange is used when connecting to remote servers via SSH.
In either exchange, the main goal is to end up with an encryption algorithm and a
common encryption secret between the two parties that only they know, which can be
used to encrypt and decrypt the actual content - the phone call.

Many people toss around the terms TLS, SSL, and SRTP without fully understanding
them. It should be understood that in order to fully protect communications it is
recommended to choose both an encryption strategy for signaling and an encryption
strategy for audio encryption.

In the following sections, we'll review each cryptography strategy in more detail.

Choosing between encryption options
There are some encryption options available for FreeSWITCH. You can encrypt the
signaling (that is, the SIP messages), the media (that is, the audio in the RTP stream),
or both.

TLS (Transport Layer Security) encrypts everything over the TCP connection; this
has the downside that jitter or delays due to TCP can occur. UDP is generally
preferred for RTP and using TLSV1 has some additional traffic overhead.

ZRTP has the advantage that it allows for end-to-end encryption without pre-
exchanging keys or certificates but is a bit more complex to set up, especially for
some clients. ZRTP is a protocol that was co-designed by Phil Zimmermann, the
same individual who created PGP encryption. More information can be found at http://z
fone.com.

SSL (Secure Sockets Layer) v2/3; SSLv2 was found to be insecure and is
deprecated since 2011, while SSLv3 has been broken in 2014 and deprecated in
2015 (google for POODLE attack). So, because there is no meaning into having a
breakable encryption, disable SSL altogether.

http://zfone.com

Disabling SSLv3 and SSLv2
It's long time we already ship with correct configuration, but you may want to check
your settings.

You do not want to have sslv2 or sslv3 into tls-version parameter value.

Edit /usr/local/freeswitch/conf/vars.xml (or /etc/freeswitch/vars.xml if you installed
from packages), and be sure this line reads as:

<X-PRE-PROCESS cmd="set" data="sip_tls_version=tlsv1,tlsv1.1,tlsv1.2"/>

Then check into all SIP profiles if they are using this same value. It can be taken from
global variables as:

<param name="tls-version" value="$${sip_tls_version}"/>

Certificates
For any kind of SIP encryption, you need a Security Certificate issued ("signed") by
a recognized Certification Authority, that takes on herself the responsibility to
assert that you are you and not a cat.

You can cheat at this by crafting "self-signed" certificates, using software that
simulate a certification authority (eg: you are your own Certification Authority).
Don't. Read the section "Certificates" in chapter "WebRTC, SIP and Verto".

Certificates have nothing to do with using SSL as encryption method, "SSL
Certificate" is just the old way to call a security certificate (because was then used
by SSL, but it can be used by TLS too, no problem, is always the same certificate).
Also if you disable SSL, you still need the same certificates for TLS, DTLS, and
all other kind of encryptions.

"Real" certificates, from "real" CAs
You want to use real, actual certificates issued by a real, actual Certification
Authority (as opposed to "self-signed" certificates). Those "real certificates" are
automatically accepted by SIP clients, WebRTC clients, browsers and Internet of
Things thingies.

At https://letsencrypt.org you can obtain legit certificates for free, or you can explore the
market about the for-pay solution that best fits your needs (eg: wildcard certificates).

For all details about certificates, how to obtain and install them for both SIP, Verto,
and WebRTC, read the section "Certificates" in Chapter 5, WebRTC, SIP, and Verto.

https://letsencrypt.org

Protecting signaling
SIP signaling contains both authentication information your phone utilizes to make
and receive calls and includes the Caller ID Name and Number of the caller and
callee, by default in plain text. This is easy to sniff and to spoof. Encryption makes
that harder. In addition, if you are using SRTP (Secure RTP), the SIP signaling
contains the cryptography key used to keep your audio secure. Someone who
observed this key in plain-text would easily be able to defeat the media encryption
utilized.

Encryption with TLS
Once you've obtained your certificates, you will need to tell FreeSWITCH to use
these certificates. To do this, set these variables in
/usr/local/freeswitch/conf/vars.xml:

<X-PRE-PROCESS cmd="set" data="sip_tls_version=tlsv1,tlsv1.1,tlsv1.2"/>
<X-PRE-PROCESS cmd="set" data="internal_tls_port=3361"/>
<X-PRE-PROCESS cmd="set" data="internal_ssl_enable=true"/>
<X-PRE-PROCESS cmd="set" data="external_tls_port=3381"/>
<X-PRE-PROCESS cmd="set" data="external_ssl_enable=false"/>
<X-PRE-PROCESS cmd="set" data="sip_tls_ciphers=ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH"/>

Note that in vars.xml TLS (historically named "ssl") is enabled separately for
internal and external profile.

The last line sets the ciphers algorithms to be used. If you want to be able to decrypt
the sniffed SIP TLS packets (using the private key), then you want to enable only
NON perfect forward secrecy (PFS) algorithms. So, use AES256-SHA:

<X-PRE-PROCESS cmd="set" data="sip_tls_ciphers=AES256-SHA"/>

After setting defaults in vars.xml, check your SIP profiles and be sure the
parameters are reflecting what you want (remember: what is written between "<!-
-" and "-->" is commented out):

<!-- TLS: disabled by default, set to "true" to enable -->
<param name="tls" value="$${internal_ssl_enable}"/>
<!-- Set to true to not bind on the normal sip-port but only on the TLS port -->
<param name="tls-only" value="false"/>
<!-- additional bind parameters for TLS -->
<param name="tls-bind-params" value="transport=tls"/>
<!-- Port to listen on for TLS requests. (5061 will be used if unspecified) -->
<param name="tls-sip-port" value="$${internal_tls_port}"/>
<!-- Location of the agent.pem and cafile.pem ssl certificates (needed for TLS server) -->
<!--<param name="tls-cert-dir" value=""/>-->
<!-- Optionally set the passphrase password used by openSSL to encrypt/decrypt TLS private key files -->
<param name="tls-passphrase" value=""/>
<!-- Verify the date on TLS certificates -->
<param name="tls-verify-date" value="true"/>
<!-- TLS verify policy, when registering/inviting gateways with other servers (outbound) or handling inbound registration/invite requests how should we verify their certificate -->
<!-- set to 'in' to only verify incoming connections, 'out' to only verify outgoing connections, 'all' to verify all connections, also 'subjects_in', 'subjects_out' and 'subjects_all' for subject validation. Multiple policies can be split with a '|' pipe -->
<param name="tls-verify-policy" value="none"/>
<!-- Certificate max verify depth to use for validating peer TLS certificates when the verify policy is not none -->
<param name="tls-verify-depth" value="2"/>
<!-- If the tls-verify-policy is set to subjects_all or subjects_in this sets which subjects are allowed, multiple subjects can be split with a '|' pipe -->
<param name="tls-verify-in-subjects" value=""/>
<!-- TLS version default: tlsv1,tlsv1.1,tlsv1.2 -->
<param name="tls-version" value="$${sip_tls_version}"/>
<!-- TLS ciphers default: ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH -->
<param name="tls-ciphers" value="$${sip_tls_ciphers}"/>

There are a number of gotchas and snafus possible with TLS. TLSruns on TCP,
rather than UDP. This has the downside that when FreeSWITCH needs to make a

connection toward the phone (such as delivering an inbound call to the phone) and if
the phone is sitting behind a firewall or NAT traversal mechanism, the phone may be
unreachable. You must make sure that all firewalls are configured to work with
TCPinbound traffic. Also, ensure that the time is configured properly on your
phones as you will get cryptic bad certificate error messages if the time is too far off,
and it will fail to handshake properly.

Protecting media
Encryption of the RTP streams (audio and video) ensures that the actual content of
SIP calls cannot be listened on, recorded, or otherwise illegally obtained. There are
multiple ways to achieve this security.

At its core, encryption requires that both sides involved agree on an encryption
method and an algorithm for encrypting and decrypting the data being transmitted and
received. In other words, you can't use an encryption method that isn't supported by
both sides. In addition, encryption algorithms are based on key exchanges, generally
at the beginning of the call. These key exchanges are similar to exchanging passwords
by both parties, but in an electronic and often automated way.

There are two popular forms of encryption generally used when encrypting audio and
media streams. These forms of encryption are SRTP and ZRTP.

SRTP was developed in 2004 by a small team of IP protocol and cryptographic
experts from Cisco and Ericsson. SRTP defines a method of transmitting and
receiving RTP with message authentication and integrity and replay protection to the
RTP data. Because it is older and was developed by key IP telephony hardware
players, it has seen adoption in most SIP equipment. SRTP is available on almost all
devices available on the market.

ZRTP was developed in 2006 by Phil Zimmermann (creator of PGP). It is a newer
entrant that makes key negotiation automatic, significantly simplifying the setup and
operation of ensuring secure and encrypted RTP calls. It also has the added
advantage of not being dependent on server-side encryption. Encryption can occur
between servers that are otherwise unaware of the contents of the RTP stream.
However, a limited number of hardware support ZRTP at this moment, most
hardware manufacturers will need to implement ZRTP for this protocol to be fully
successful.

Both SRTP and ZRTP technologies are supported by FreeSWITCH and are described
in this chapter.

Encryption with SRTP
SRTP is an encryption mechanism that is negotiated during call setup via SIP. Both
sides of the SIP conversation must agree to support RTP encryption and exchange
keys for encryption in the SIP packets. The encryption key used for SRTP is
exchanged inside SIP packets. This information is then used to encrypt the audio
stream.

SRTP enables encryption of the RTP data with minor overhead to the RTP UDP
packets. This has the benefit that the call data are encrypted but still transmit via
UDP, minimizing latency and using network traversal mechanisms that would
normally be used in an unencrypted stream.

Generally SRTP is the most firewall friendly strategies for existing installations since
the actual work has already been done to get RTP to transmit properly over the
network. SRTP is fairly easy to configure within FreeSWITCH.

Note that unless you enable encryption of the SIP packets as well (discussed later)
the key for the SRTP goes in the clear. For a fully secure connection between your
phone and FreeSWITCH you should combine SIP encryption with SRTP
encryption. This prevents any snooping or man-in-the-middle attacks. If only SRTP
is enabled, only payload packets of type RTP packets will be secured.

Enabling SRTP
You can enable SRTP from your Dialplan on a per-call basis by setting the following
flag:

<action application="set" data="sip_secure_media=true"/>

This needs to be done on both legs and on both inbound and outbound calls to be fully
effective. Of course, the ITSP that provide you gateway to PSTN will probably not
support SRTP so you may only be able to enable this on legs from FreeSWITCH to
the endpoint(s).

You can check if media is secured properly by checking for the variable
${sip_secure_media_confirmed} to be set. As an example, the following block will
play a bong tone when SIP media is secured:

<extension name="is_secure">
<condition field="${sip_secure_media_confirmed}"
expression="^true$">
<action application="sleep" data="1000"/>
<action application="gentones" data="${bong-ring}"/>
</condition>
</extension>

Debugging SRTP
When debugging encryption, a helpful hint is in the SIP packet as to whether the
phone is properly requesting encryption. You will see SIP packets that include the
a=crypto line if you have offered encrypted RTP in your SIP setup (you can see SIP
TLS packets in plaintext on FreeSWITCH console, by typing: "sofia global
siptrace on").

Encryption with ZRTP
ZRTP is an SRTP-based encryption algorithm that differs from SRTP by exchanging
encryption keys within the media stream, making the encryption more secure and
also transparent to servers that don't understand the protocol. This allows ZRTP to be
more flexible than SRTP and gives complete control to the endpoints to handle all
levels and requirements of encryption without the risk of a man-in-the-middle
attack. ZRTP also does not require a key exchange prior to media setup. The key
exchange occurs during the initial portion of the RTP conversation. The ZRTP
protocol is fully laid out in RFC 6189.

One of the major strong points of ZRTP is its ability to work via proxies. Typically
with SRTP, every point communicating via the encrypted stream needs to be aware of
the encryption protocol, and also able to encrypt and decrypt the audio stream. This
allows for snooping the encryption mid-stream if you have access to a server where
the stream traverses. With ZRTP, the opposite is true; the servers in the middle do
not need to be aware of the encryption protocol at all. They believe they are
simply passing standard RTP packets. Since the servers are unaware of what the
content of the RTP stream contains, only the two endpoints need to support ZRTP
in order for the conversation to be completely secure. The proxies don't need to
understand, or pass encryption information.

Another major advantage of ZRTP in FreeSWITCH is that it's enabled by default.
The ZRTP protocol itself inserts negotiation packets into every initial RTP
conversation and waits for a reply. If a reply is received, ZRTP encryption is
automatically enabled when the other endpoint requests it.

Because ZRTP is a less popular protocol, there has been work to not only build
ZRTP-enabled phones and soft clients but also work on a ZRTP software proxy.
This proxy allows you to simply install a ZRTP plug-in software program, known as
Zfone, and RTP traffic will be automatically encrypted, even from/to a software that
doesn't natively support ZRTP. Zfone runs in the background unobtrusively and pops
up to notify you when a key exchange has occurred. There is also an SDK available
to help developers build ZRTP-enabled software and hardware as well.

Enabling ZRTP
First of all, edit the file /usr/local/freeswitch/conf/autoload_config/switch.conf.xml
and set rtp-enable-zrtp to "true":

<param name="rtp-enable-zrtp" value="true"/>

Then you can enable or disable ZRTP support from within your Dialplan using the
following command:

<action application="set" data="zrtp_secure_media=[true|false]"/>

When ZRTP is being negotiated, you will see the following line on the FreeSWITCH
console indicating ZRTP is being offered:

[DEBUG] switch_rtp.c:928 [zrtp main]: START SESSION INITIALIZATION.

The ZRTP protocol will then begin injecting ZRTP negotiation packets into the RTP
stream. If ZRTP is successfully started for a session, you will see a series of ZRTP
log messages followed by a confirmation message that the channel is now secure,
such as the following:

[zrtp protoco]: Enter state SECURE (DH).

You will also see that a cache of the selected shared secret was auto-stored, which
will be used for comparison purposes on the next call:

[zrtp cache] Storing ZRTP cache to </usr/local/freeswitch/db/zrtp.dat>...

Testing media SIP encryption
In demo configuration, when you call 9664 (or press "3" after calling the demo IVR
at 5000) both SRTP and ZRTP are tried. If you call from a recent softphone with
SRTP or ZRTP enabled (eg, Linphone) you will hear "This call is secure" before the
music.

Protecting WebRTC SIP and VERTO
Signaling and Media
WebRTC is encrypted by default, using TLS for wss signaling and DTLS (TLS on
UDP) for SRTP encryption. See the section Encryption Everywhere of WebRTC
Chapter.

Encryption of media and data streams is mandatory. Full stop. There is no way
you can have a WebRTC communication without encrypting the streams that are
exchanged. Those would be the media streams (audio+video) and, if present, the data
streams. Media streams are encrypted as SRTP with key exchange via DTLS.

Session protocol's signaling (SIP or VERTO) is encrypted too. The transport of
choice for such signaling is usually Secure WebSocket. You will see almost
everywhere the URI prefix WSS:// (WebSocket Secure) when defining WebRTC
signaling servers and endpoints. WSS signaling exchange is encrypted by TLS.

Protecting passwords
Passwords are used in FreeSWITCH when phones register, when phones originate
a call, when FreeSWITCH registers to external gateways/ITSPs and when
administrators authenticate into the FreeSWITCH system via Event Socket (eg:
fs_cli). Most of these areas utilize weak plaintext passwords.

In addition, many users set their passwords to simple easy-to-guess combinations.
Worse yet, some don't ever change or set up their voicemail password, leaving the
defaults in place.

These passwords are very often targeted and once gained, they are exploited to
commit fraud.

Following are some of the mechanisms available to mitigate this.

Registration passwords as hashes
Registration credentials do not need to be passed or kept on disk in plain-text. When
defining SIP credentials in your User Directoryy, instead of including the following
line:

<param name="password" value="samiam"/>

replace it with a pre-calculated a1-hash of the password, like the following:

<param name="a1-hash" value="c6440e5de50b403206989679159de89a"/>

To generate a1-hash, on a linux box get the md5 of the string
username:domain:password, which is your username, domain name, and password
all tied together with a colon. As an example:

echo -n "darren:2600hz.com:pass1234" | md5sum
b62d1e3e27773ffd173c87e342a6aace

You would utilize the returned hash in your User Directory entry. This means you did
not have to store the actual SIP registration on disk and someone who finds a way to
compromise the file can't see the password either.

A full example would look something like the following:

<user id="darren">
<params>
<param name="a1-hash"
 value="c6440e5de50b403206989679159de89a"/>
</params>
</user>

Voicemail passwords
Voicemail boxes have a history of being compromised for a variety of reasons.
Besides simply listening to someone else's messages, voice mailboxes are often
exploited because they have call-back or forward features which can be turned on
remotely. One of the most popular strategies is to hack a voicemail box and forward
that person's calls to an expensive international destination, racking up thousands
of dollars of calls in a short amount of time. This makes voicemail password hacking
popular even today.

Protection against weak voicemail passwords is fairly simple. FreeSWITCH stores
voicemail passwords in plain-text in the database, allowing you to scan for
passwords which are weak, such as 1111 or 1234. You can also scan for people who
are using their extension number as their voicemail password which is another
popular (and insecure) password strategy.

To scan for weak passwords you'll need to write a script that looks for passwords in
the voicemail configuration database. Assuming you are using the defaults in
FreeSWITCH, the voicemail database is stored in a SQLite file in your
FreeSWITCH DB folder. This folder will be in one of various locations depending
on how you installed FreeSWITCH, but most commonly it is in /opt/freeswitch/db,
/usr/local/freeswitch/db, or /var/lib/freeswitch/db.

A sample way to check your database could be using the following simple SQLite
query:

sqlite3 db/voicemail_default.db "select * from voicemail_prefs
where password=1234 or password=1111"

This command would use the SQLite3 linux client to look in the voicemail_prefs
table for any passwords that are 1111 or 1234. It will print all information about that
mailbox on the screen, including the username and domain name of the user who has
this password. You can then take corrective action by either resetting the password
forcefully or contacting the user to advise them to change their password.

Summary
This chapter is only a brief guide to the most common VoIP security technologies
prevalent today. There are a plethora of additional resources including sites such as
www.hackingvoip.com, books on Hacking VoIP, and on Computer Security.

Taking the basic steps outlined in this chapter will provide you sufficient amount of
security against today's most common hacks, DoS attacks, and abuses. This should
allow most small to medium sized PBXes or hosted VoIP systems to operate securely
and reliably.

We now move on to the last chapter in this book where we see how to react when
things go wrong, we're not able to implement something, or we hit a bug in
FreeSWITCH. We'll learn the basics about troubleshooting, asking for help, and
reporting problems.

Troubleshooting, Asking for Help, and
Reporting Bugs
SIP, WebRTC, PSTN, Dialplan, IVRs, Lua, ESL, HTTAPI, XML_CURL, NAT,
Security, ITSPs, UDP, RTP, TLS, WSS, Certificates, phones, softphones,
smartphones, apps, are you born learned?

In this chapter we'll saw how to investigate problems, troubleshoot your
FreeSWITCH implementation and operation, how to obtain and understand debug
logs and packet traces, how to identity and pinpoint the interoperability problems
with your upstream and downstream providers and users.

We'll then see how to search the documentation before asking for help, both free help
from community (mailing list, hipchat, IRC) and commercial support and consulting
from the pros. When you find a bug, or you want to know if a problem has been
encountered before and classified as bug, the tool you want to use is Jira. We'll give
you full instruction on how to research and report bugs.

Then we'll close this chapter, and the book, with a description of ClueCon the yearly
Real Time Communication and IoT Conference we organize in Chicago in August.
ClueCon motto is "from developers to developers", and its true: you'll find us there,
and all the developers' community of Open Source Real Time Communication and
Internet of Things.

Troubleshooting FreeSWITCH
So many things can go wrong in Real Time Communication, and most of them are not
your responsibility, nor are in your reach. Can be a faulty switch in your Internet
Carrier, a misconfiguration in ITSP, a phone faulty firmware, a customer firewall,
your datacenter new topology.

And, obviously, can be an error in your implementation of any of the techniques we
saw in previous chapters. Or, maybe you're right, and is a bug in a FreeSWITCH
module.

Following sections are about how to troubleshoot your FreeSWITCH
implementation, so to understand what the problem is, and where it comes from.

For more details and techniques please read the chapter "Tracing and Debugging
VoIP" in "Mastering FreeSWITCH" book, Packt Publishing, 2016.

firewall rules and network issues
Seems trivial, but the number one source of problems is a misconfigured firewall.
Misconfigured for the purpose of allowing FreeSWITCH network traffic to flow,
that's it. But maybe the person in charge of maintaining the firewall rules is unaware
of what kind of traffic (addresses, protocols, ports) FreeSWITCH will generate and
need.

When investigating a problem, a one way communication, calls dropped after 30
seconds or a minute, all those kind of failures, first be sure the traffic is not blocked.

Open all ports and all protocols on your FreeSWITCH server machine (eg, disable
the server firewall completely). Edit the file /usr/local/bin/disable_iptable.sh to be:

#!/bin/sh
echo "Flushing iptables rules..."
sleep 1
iptables -F
iptables -X
iptables -t nat -F
iptables -t nat -X
iptables -t mangle -F
iptables -t mangle -X
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT

Then make it executable, and execute it (DO NOT EXECUTE IT LINE BY LINE!
You'll risk to be locked out from your server):

chmod +x /usr/local/bin/disable_iptable.sh
/usr/local/bin/disable_iptable.sh

Now restart FreeSWITCH, and see if the problem is still there. If no joy, check also
the following list:

If behind NAT
what is the public address of FreeSWITCH? Is correctly reported into all
ext-rtp-ip and ext-sip-ip parameters? (go to /usr/local/freeswitch/conf and
execute "grep -r ext-")
are all the port and protocols "open" and forwarded from the Internet to
FreeSWITCH?

If an external firewall, worst of all an appliance
is it blocking your traffic?
worst, is it applying some sort of ALG (Application Level Gateway) to SIP
or other protocols? You DO NOT WANT ANY SMARTNESS in your
router or firewall. They're not smart enough to be smart, and they end up

doing subtle and intermittent damages. Believe. Disable all kind of
smartnesses in routers and firewalls

checking FreeSWITCH configuration
and operation
If you're confident (and double checked) that is not a network problem (and you
verified the problem is still there when you disable all firewalls and open and
forward all protocols and ports, then you want to check your FreeSWITCH
configuration.

Stop FreeSWITCH (from console "fsctl shutdown"), then restart it (or watching it be
restarted by systemd). On a Debian server, you can now check four most precious
files (you will easily find the equivalent files on other OSes):

/usr/local/freeswitch/log/freeswitch.log
/var/log/syslog
/var/log/daemon.log
/usr/local/freeswitch/log/freeswitch.xml.fsxml

freeswitch.log this is your primary source, it contains all of FreeSWITCH self-
awareness. Also, you'll find here how FreeSWITCH startup has gone.
Particularly look for ERR and WARNING lines. For example, maybe you
misconfigured one of your sofia SIP profiles, and that profile refused to start.
Or, it tried to start but found "its own" network port already taken by another
(zombie?) program.

You check this file to see how your extensions have been interpreted by
FreeSWITCH: maybe a regular expression you put in a condition was not
matching (maybe because what was incoming was not in the format you
expected, or because the regex is wrong).

A lot of snafus like: "I set and check this variable, but I forgot to "inline" the
set action" can be caught reading freeswitch.log

syslog/daemon.log contain messages generated by the Operating System, and
may report the reason FreeSWITCH has not started
freeswitch.xml.fsxml is a "brain dump" of FreeSWITCH itself. It contains the
entire XML tree FreeSWITCH has built in its memory at startup time from the
XML files in conf directory, default settings, calculated settings (eg, local IP
address), and expanded macros and variables. Can be most revealing.

fsctl loglevel 7
For an interactive and real time check of what happens inside FreeSWITCH, nothing
is so valuable as the console, or fs_cli. When connected, be sure to type "fsctl
loglevel 7", so to pump up to debugging level. You'll be able to watch it all, from call
creation to dialplan interpretation and execution.

Don't forget: you can filter logging on console so you only see output related to a
particular call uuid, use the command "/uuid " followed by the uuid you saw with
"show channels" or "show calls". If it's too late, grep freeswitch.log for the call uuid

sofia global siptrace on
From FreeSWITCH console, you enable realtime output of SIP packets on all
profiles with "sofia global siptrace on". This is particularly useful when saw in the
context of a console running at loglevel 7: you will see the causal relationships
between dialplan, processing, and SIP packets. Also, with a modicum of practice
you'll be able to spot problems like incompatible codecs, NAT problems (wrong
addresses in SIP packets), wrong passwords, non-matching domains, etc

verto debug=10
If you set the parameter "debug" to the value "10" in
/usr/local/freeswitch/conf/autoload_configs/verto.conf.xml, then all JSON protocol
exchanges will be displayed in cleartext on console (they travels encrypted on the
wire).

This will let you see any anomalies (like wrong passwords, or failed actions), and
also let you learn more about the VERTO protocol itself.

sngrep: SIP dialogs visualization
This is the tool that has taken the world of telecommunication by storm. Don't miss it.
It's even available as a Debian, CentOS, OSX and OpenWRT/LEDE package, ready
to install! Go to https://github.com/irontec/sngrep for installation instruction, and complete
documentation. We'll barely scratch the surface of what sngrep can do.

Developed by Ivan Alonso (IRC: kaian), its the perfect way to watch SIP traffic in a
terminal connected to a remote machine.

Following is a SIP dialog (call): on the left the time and delta of SIP message, the the
caller source ip and port, the list of the SIP methods and responses exchanged (the
one we're visualizing is in bold, the second INVITE), then the callee ip address and
port, and on the right the full SIP message we're visualizing. Please note that this
second INVITE contains (as per protocol) the authorization credentials (Proxy-
Authorization) that were asked for by FreeSWITCH with the previous 407 response.
FreeSWITCH will accept the credentials (and establish the call) with the next "200
OK" response, that will be confirmed by an "ACK" sent from the phone. The call
will be terminated when the phone sends a "BYE" method, to which FreeSWITCH
reply with a "200 OK" response.

Also, please note in the "body" of the INVITE message visualized in picture, we can
see inside the media description (the SDP) the zrtp-hash that indicates that our client
(a Linphone, actually) may attempt to negotiate ZRTP encryption of the media
streams.

https://github.com/irontec/sngrep

Using sngrep you will lower the barrier between you and SIP understanding, and a
steep curve will become much more approachable.

tcpdump for saving net traffic in pcap
files
When you ask for help in Real Time Telecommunication you will often (always?) be
asked to provide a "pcap" file of your network traffic including the problematic
session. Also, you will often want to remotely save the traffic in a file that you will
later analyze (with sngrep or wireshark, etc).

The tcpdump utility is almost guaranteed to be available on any kind of operating
system. Its most basic usage (save all the traffic sniffed by the Ethernet interface) is:

tcpdump -nq -s 0 -i eth0 -w /tmp/dump.pcap

You can filter what you save to only packets incoming and outbound from/to port
5060 (no protocol specified, so both TCP and UDP, full "traditional" SIP signaling):

tcpdump -nq -s 0 -i eth0 -w /tmp/dump.pcap port 5060

Asking for Help
OK, OK, we've all been there. Many of us have been there many and many times. The
best ones between us are there at least once a day. Asking for help when you hit the
outer border of your knowledge. This simply means you're pushing yourself beyond
your limits. And this is good, if becomes an occasion to actually move your limits.

Help is there. FreeSWITCH has two incredible strengths: one is an exceptional
community, extremely knowledgeable, and very respectful and caring toward
newcomers. You let the community know you've done your part, you've researched
the documentation and the archives, you've started from a sound configuration, but the
problem is still there. Top experts will ask you for more info and will actually try to
help you.

The other strength is that FreeSWITCH developers and top contributors are also
professional consultants with decades of experience you can tap for commercial
grade support and consulting. Your project technical success is assured!

Read the documentation first!
You will get much more convinced help, and you'll be able to better help the
community help you, if you've done your part. Nothing is more irritating (eg, to me)
than receiving a message or reading a mail with a question that would be answered
by the first result in a Google search. That is not nice. We're all working people, and
putting such a message in the stack of the ones we read (yes, we read the mailing list,
the IRC and HipChat) is akin to waste our time because you think your time is such
valuable you can't google around or read the online documentation.

Also, reading the available documentation will enable you to gather all information
we need to answer your questions, and having a basic knowledge will allow you to
ask the right questions.

confluence
http://freeswitch.org/confluence -the first source of knowledge you want to query is our
Confluence documentation system. Is a web service similar to a wiki but
interconnected with our development, bug marshaling and source code management
environment. Has been developed by Atlassian, opensource, and its usage has no cost
for open source projects like FreeSWITCH.

Confluence is a pleasure to search, and has up to the minute updated information and
documentation about all that is FreeSWITCH or related to FreeSWITCH.

We put a lot of effort in our official documentation, please read it and search it.

http://freeswitch.org/confluence

books
Hehehe, I know you like books :). Other nice books about FreeSWITCH are also
published by Packt, like this one. Their title are: "FreeSWITCH 1.6 CookBook" and
"Mastering FreeSWITCH". We know the authors, we can guarantee for them.

Another book I always counsel is "VoIP Deployment for Dummies", published by
Wiley. It's not for dummies at all, and (even though it was published in 2009) will
give you a complete general course 400 pages long (covering topics including SIP,
LAN metrics, dealing with ITSPs, and many more).

As reference works on SIP, RFCs are there for free, and the book from Johnston,
"SIP, understanding the Session Initiation Protocol", Artech House, I found it
complete and easy to consult when I look for details. For the architecture and the
working of SIP based complex systems, "Session Initiation Protocol, Controlling
Convergent Network", McGraw, is a good one.

I want to definitely signal here the book of my friends at OpenSIPS project, Bogdan-
Abdrei Iancu and Flavio Goncalves, "Building Telephony Systems with OpenSIPS",
again Packt publishing, because in its first part it lays down so well a working
knowledge of SIP (that's needed for reading the rest of the book). Knowledge that's
rooted in real implementation experience. Also, OpenSIPS as a SIP load balancer,
proxy, registrar, etc is a project complementary to FreeSWITCH, and they are very
often used together.

mailing list archives
I urge you to search the mailing list archives of FreeSWITCH. More than ten year of
daily technical discourse about how to do things in and with FreeSWITCH. They are
plenty of incredibly deep and accurate information that has been written by the
brightest people discussing and solving problems. Not only you learn the answer to
your question, the "how-to", but also you'll be able to follow the line of reasoning
conducive to that.

Yay for the mailing list archives: http://lists.freeswitch.org/pipermail/freeswitch-users/

http://lists.freeswitch.org/pipermail/freeswitch-users/

google
A lot of blog out there where people recorded their experiences with FreeSWITCH,
and where deep technical discussions are offered about why a particular technique of
application development has been chosen and how that project has been
implemented. People like to describe their technical success stories. And sometimes
their horror stories too.

How to ask for Community Help
So, you've tried hard to understand what's happening in your system, and the domain
of the problem of your project. You've read the relevant docs and other people's
experiences, but there is still something unclear, an aspect you do not understand, or
something that simply does not square with the rest of your knowledge and
experience.

Please, you're welcome, we're here to help. There is an entire community including
hundreds of professionals that is happy to share and build knowledge. Interactively,
in real time, via chatting system as IRC and HipChat, or asynchronously via mailing
list.

Please be ready to provide relevant information:

Platform, Operating System, Hardware, Virtualization Kind
FreeSWITCH output of "version" command
Your XML Dialplan
Your Script
FreeSWITCH console debug output (please, do not edit ip addresses, is not
nice and messes things a lot)
FreeSWITCH console debug output complete of sofia siptrace and verto
debug output
Network packets capture (pcap file) of relevant traffic

Those informations are not to be attached to mails, or (worst) dumped in IRC and
HipChat. Those info must be made publicly available by a publicly available
webserver, or by using FreeSWITCH own pastebin implementation, that has special
syntax coloring, at https://pastebin.freeswitch.org/ In mails and chats you post the link to the
required files and pages.

Be patient, people is working and is helping you in their free time, out of good will,
and by a sense of community. Do not expect immediate answers just because you are
in a hurry, or in an emergency. Being pushy will not getter better good will from
people. Being clear and to the point, providing all relevant info, but not too much,
will go a long way to help you getting the answers you looking for.

Also, keep in mind that people lives in timezones, and has holidays, etc. Most
people in FreeSWITCH community live in North America, followed by Europe
(west+est), and Asia (particularly India and Pakistan). Chinese speakers have
developed their own FreeSWITCH community, and one of their leader (Seven Du Jin

https://pastebin.freeswitch.org/

Fang) is present and active also in the English speaking community. There is also a
lively scene in Russian language.

IRC
This chatting system has a special place in the heart of any geek: a lot of technical
discussions and mutual help have been taken place via IRC for so many years.

FreeSWITCH community IRC channel is "#freeswitch" (note the initial pound sign)
on irc.freenode.net. You will need a client the like of Pidgin to connect to IRC, then
choose to join our channel, and lurk for some time until you have "got" how it works.
Then type "~take-a-number" followed by your question. Ask things politely but
informally, without any introduction, without asking permission to ask, go straight to
the point, and then be patient. Someone will answer your question, eventually. And
you will be invited to provide more info. Be ready. If you got no answers after
several hours, then ask again.

HipChat
HipChat is a new chatting system that has many advanced features not available in
IRC, and is part and integrated with the Atlassian suite of software Development
Management tools we are using. Particularly, HipChat chat history is always
archived and is available to be searched, so nothing will be lost. We find it handy for
our internal usage, and we have some rooms open also to the community at large.
Best way to interact is to register for a free account on our bug tracking system (http://jir
a.freeswitch.org), then using that login and password with the native HipChat client for
your computer. Google for HipChat client download. You will have to insert
hipchat.freeswitch.org as server in settings. You can also join from the web, using
this link: https://hipchat.freeswitch.org/

http://jira.freeswitch.org
https://hipchat.freeswitch.org/

mailing lists
Mailing list in my perception is the main route for finding help. Asynchronous mails
means that people will most probably find the right moment for answering,
independent from which timezones or lifestyle they live in. You first subscribe to the
mailing list, and after your registration has been approved (allow for roughly one day
or so) you'll be able to post to the mailing list. Devote some time, at least at the
beginning, to search and read the mailing list archives (see before), so you learn how
information is exchanged. Then, without much ado, you welcome to ask your
questions. Try to have an explicit and specific mail subject: "FreeSWITCH problem"
or "FreeSWITCH does not work" will not get much attention from busy
professionals. A mail subject like: "Timeout in playandgetdigit does not work for
me" or "Registered user not reachable from failover machine" is guaranteed to grab
curiosity of knowledgeable people. Eg: you're using precious time of other, busy,
people. Do it in the best way.
You can subscribe to FreeSWITCH mailing list here: http://lists.freeswitch.org/mailman/listinfo/f
reeswitch-users

http://lists.freeswitch.org/mailman/listinfo/freeswitch-users

Official Commercial Support and
Consulting
Professional support contracts and project consulting is available by writing to
"consulting@freeswitch.org". You will be answered by FreeSWITCH Solutions
and introduced to all commercial procedures, a person will be in charge of defining
your case. Resources will be assigned to your case, and your problems and worries
will fade away. FreeSWITCH Solutions, the official company of FreeSWITCH core
developers, is also reachable at http://freeswitch.com/.

http://freeswitch.com/

Reporting Problems
What if you hit a bug? First of all try to understand if actually you hit a FreeSWITCH
bug. Check all the things around FreeSWITCH that can be cause of malfunctioning:
network, firewalls, databases, upstream and downstream providers, etc. OK, let's say
you checked it all.

Then, download and install latest stable FreeSWITCH version. You will be asked:
"is this problem affecting latest stable?". If you're unable to answer "yes" (and give
proof of it), your problem will not get any attention (maybe is fixed in latest stable).

Then, do the same with latest development version of FreeSWITCH, called
"MASTER". "is this problem affecting master?" Be ready to answer this question
too. If is solved in master, then the fix will be backported to stable, if that's possible
at all.

don't report a bug on mailing list !
One things that our developers and contributors hate is the reporting of bugs to the
mailing list. In some way, for some reason, people believe they can jot down a mail
to mailing list, and then one of us will take care to read that mail, and then do the
careful filling of the very detailed form for bug reporting. Not at all, this is not gonna
happen. You will only have a slightly annoyed answer the like of: "this is the ten
thousandth time we repeat: bug reports belongs to Jira, do not report bugs in
mailing list". If we would use mails as bug tracking tool, most of the bugs reported
would never be fixed, will come back (regression), and/or be forgotten. Use Jira for
bugs. Not only to file a bug report, but also to search already reported bugs. Maybe
someone else has already reported your problem, that was not a bug, and the Jira
issue resolution will tell you how to make it work.

how to file a bug on Jira
First impact with http://jira.freeswitch.org can be intimidating, but its not. Listen: is easy
and fast. And is also your only option, this way or the highway.

So, you register and obtain a jira account, then you can create an "issue". You will be
presented with a long and daunting form, but actually what we want is to be certain
that we have all the information we need to reproduce the bug, and that you have
reproduced the bug on latest FreeSWITCH version.

Try to be the more complete and precise possible, while not writing too much.

Particularly all patches, logs, relevant files, scripts, etc must be attached (as in
"uploaded") not cut and pasted in comments. Also take care of the filename
extensions of the attachments, so they will be recognized by browser when
downloaded: a patch or a diff file will have extension .diff, a logfile will have
extension .log, etc

http://jira.freeswitch.org

When you finished posting your bug report, first of all feel proud and happy because
you have helped the FreeSWITCH project and community. And then be patient. You
will be automatically alerted of comments, questions, issue assignment, resolution,
rejection, etc If asked for more info, provide them immediately. There is nothing else
you can do. Just wait. Ohum. Actually, if you have a paying interest in seeing your
jira issue to have an higher priority over other jira issues, then write to
consulting@freeswitch.org for costs and details.

ClueCon
ClueCon is our annual convention, the Convention of those who have a Clue in Real
Time Communication and Internet of Things. August of each year, in beautiful
Chicago (nicknamed "the Windy City", there is the River, is in the North, is kind of
fresh and breathable. Eg, is not Phoenix, Matt. OK, is neither Fargo) all professionals
VoIP, WebRTC, Makers, Visionaries and Scientists come together for a week of
coding, fun, presentations, pizzas, training and games. All open source projects
related to communication converge there, and you will found yourself rubbing
elbows with your development heroes. Check the website https://www.cluecon.com/, see
the speakers and the agenda, and register NOW for next August (the earlier the
registration, the lower the cost).

https://www.cluecon.com/

Summary
This last chapter gave you an overview on how to troubleshoot problems in
FreeSWITCH, what are the potential suspects (firewall, network, router,
configuration), and how to check them.

Then we saw how to visualize the debug logs of FreeSWITCH and the signaling part
of communication: SIP and Verto.

We looked at which documentation to read, where to find relevant information for
solving our problems: mailing list archives, official documentation site, blogs,
books.

If the problem is still there, and we've already researched it all, then we ask for help.
Free, best effort help from community, commercial professional help from
consulting@freeswitch.org.

If we believe to have encountered a FreeSWITCH bug, we must report it to https://frees
witch.org/jira/secure/Dashboard.jspa. Don't even bother to report it in mailing list.

As book closure we had a brief description of ClueCon, a Developer's Paradise
where we annually gather in Chicago to have serious fun.

This book was downloaded from AvaxHome!

Visit my blog for more new books:

www.avxhm.se/blogs/AlenMiler

https://freeswitch.org/jira/secure/Dashboard.jspa
https://tr.im/avaxhome

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Architecture of FreeSWITCH
	Real-time communication without mysteries
	The FreeSWITCH design - modular, scalable, and stable
	Important modules - Endpoint and Dialplan
	Complex applications made simple
	Voicemail
	Multi-party audio/video conferencing
	FreeSWITCH API commands (FSAPI)
	The XML registry
	Scripting language modules
	The demo configuration

	Summary

	Building and Installation
	Where to Install FreeSWITCH
	Choice of Operating System
	Linux
	Windows
	OS X (Mac)
	*BSD

	Packages or Source?

	Installing FreeSWITCH
	Debian 8 Jessie
	From Packages
	From Source

	Windows

	Summary

	Test Driving the Example Configuration
	Important concepts to understand
	XML Configuration
	Regular Expressions
	Call Legs
	IVRs, Interactive Voice Response (Systems)
	Extensions, Contexts and Profiles
	Variables
	Caller profile Variables
	"Normal" Variables
	"Preprocessor" Variables

	FS_CLI and Console, Controlling FreeSWITCH
	Exiting from Console kills FreeSWITCH
	Some useful CLI commands

	Configure SIP and make the first calls in demo dialplan
	Change demo example password
	Configure Linphone on a Desktop
	Configure a SNOM SIP "real" phone
	Configure Linphone on Android
	And now... Fun, fun, fun with the Demo Dialplan
	9386, Funny Prompts
	1000...1019, Phone to Phone Local Call
	5000, Calling the Demo Example IVR
	3000, Conference Call

	Example Dialplan quick reference

	Summary

	User Directory, SIP, and Verto
	User Directory concepts
	AAA: Authentication, Authorization, Accounting
	Exploring and Using the Demo Example User Directory
	Domains and groups
	Users
	Adding a user to the demo example directory and dialplan
	Adding a new user to the directory
	Modifying the dialplan for the new user

	Call to a Group
	Voicemail

	Communicate with the World via SIP Gateways and DIDs
	SIP Gateway from Us to the ITSP to the World
	SIP DID from World to the ITSP to Us
	SIP and Verto Profiles, Dialplan Contexts, ITSPs
	SIP Profiles
	Dialplan Contexts
	Verto Profiles and Dialplan Contexts
	ITSPs

	Summary

	WebRTC, SIP, and Verto
	WebRTC concepts
	Encryption Everywhere
	WebRTC in FreeSWITCH
	WebRTC Signaling in FS: SIP and Verto
	Why SIP and why Verto?

	WebRTC Media Streaming in FS: SRTP

	Installing and Configuring WebRTC in FS
	Certificates
	Installing and Configuring Apache or NginX for HTTPS serving
	Apache
	NginX

	Configuring VERTO
	Configuring SIP on WebRTC (WSS)

	Writing WebRTC Clients
	SIP and JavaScript
	Verto and JavaScript
	Verto Communicator, an Advanced WebRTC Client

	WebRTC Rooms, both SIP and Verto Clients
	Conference chat in WebRTC Rooms
	FreeSWITCH Conferences
	mod_sms and chatplan
	Dialplan "chat_proto" extension
	HTML
	JavaScript
	TODO

	Summary

	XML Dialplan
	Forget all you know
	Contexts
	Default context
	Public context
	Features

	Extensions
	Conditions (and "patterns")
	Call legs (channels)
	Channel Variables
	Regular Expressions
	Actions and anti-actions
	How dialplan processing works
	Important dialplan applications
	answer
	bridge
	hangup
	ivr
	play_and_get_digits
	playback
	set
	sleep
	transfer

	Dialstring formats
	SIP (sofia)
	VERTO
	Other dialstring formats
	Originate Command

	Summary

	Phrase Macros and XML IVRs
	Phrase Macros and Voice Prompts
	Voice Prompts history
	Sound files in FreeSWITCH
	Sound files locations, sampling rate and fallbacks

	Phrase Macros: Concatenating Sound files
	macro name (pause)
	input pattern
	match - nomatch
	action

	Phrase Macros: Invocation, Patterns and Registers
	Phrase Macro Invocation
	Input Pattern and Registers

	XML IVRs
	IVR in demo config
	XML voice menu fields
	name
	greet-long
	greet-short
	invalid-sound
	exit-sound
	timeout
	inter-digit-timeout
	max-failures
	max-timeouts
	digit-len
	tts-engine
	tts-voice
	confirm-key

	XML voice menu entries and actions
	menu-exec-app
	menu-play-sound
	menu-sub
	menu-back
	menu-top
	menu-exit

	Nesting XML IVRs

	Summary

	Lua FreeSWITCH Scripting
	Many scripting languages
	Why Lua?

	Basic Lua syntax
	Lua and FreeSWITCH
	freeswitch
	freeswitch.Session and session
	freeswitch.API
	freeswitch.Dbh
	freeswitch.Event
	freeswitch.EventConsumer
	freeswitch.IVRMenu

	Lua scripting IVR Applications
	playAndGetDigits
	Syntax
	Arguments
	Behavior

	XML demo IVR in Lua
	Always checking session:ready()

	Summary

	Dialplan in Deep
	Where are the previous Dialplan seasons?
	XML Dialplan Recap
	More about conditions
	regex operator (multiple variables and/or expressions)
	nested conditions

	Pitfalls to avoid
	Variables
	Global variables
	Time of Day, Day of Week, Holidays
	Channel Variables
	Channel Variables and Field shortcuts
	Channel Variables and Caller Profile fields
	Channel Variables and call setup
	setting channel variables in dialstrings
	setting channel variables on B-legs: export and nolocal
	exporting variables to SIP custom (X-) Headers

	API commands from Dialplan
	FreeSWITCH string interpreter functions
	cond, C-like "expr ? truevalue : falsevalue"
	variables' substrings
	db and hash: simple key/value stores

	"Hotkeys", Listening, Barging
	bind_meta_*, DTMFs to actions outside menus
	eavesdrop (call barge)
	eavesdrop DTMF commands

	Dialplan Cookbook
	Match by IP address and call a number
	Match an IP address and Caller ID
	Match a number and strip digits
	Match a number, strip digits, and add a prefix
	Call a registered device
	Try party A, then party B
	Route DIDs to extensions
	Alternate outbound gateways
	Multiple endpoints with enterprise originate

	Summary

	Dialplan, Directory, and ALL via XML_CURL and Scripts
	mod_xml_curl rationale
	mod_xml_curl configuration
	mod_xml_curl: Caveats and Pitfalls
	php/mysql setup for mod_xml_curl
	Create and populate the Database
	Setup NGINX and xmlhandler.php
	mod_xml_curl configuration
	Testing php/mysql setup for mod_xml_curl

	Lua XML handler
	lua xmlhandler script
	lua.conf.xml
	Lua xml_handler.lua testing

	Summary

	ESL - FreeSWITCH Controlled by Events
	Event System Fundamentals
	Event format - Headers and Body
	Event Handling modules
	mod_event_socket
	mod_event_socket configuration
	Reading and sending events via telnet
	fs_cli

	Event System Commands
	api
	bgapi
	event
	filter
	filter delete
	sendevent
	exit
	auth
	log
	nolog
	nixevent
	noevents
	sendmsg
	call-command
	execute
	hangup

	Outbound Socket - call connects to you
	ESL - Event Socket Library
	ESL supported languages

	ESL Reference
	eslSetLogLevel
	ESLevent Object
	new
	serialize
	setPriority
	getHeader
	getBody
	getType
	addBody
	addHeader
	delHeader
	firstHeader
	nextHeader

	ESLconnection Object
	new
	socketDescriptor
	connected
	getInfo
	send
	sendRecv
	api
	bgapi
	sendEvent
	recvEvent
	recvEventTimed
	filter
	events
	execute
	executeAsync
	setAsyncExecute
	setEventLock
	disconnect

	ESL installation
	ESL: Examples in Perl
	Display Filtered Events
	Use "api" and "bgapi"
	Use "sendEvent"

	Summary

	HTTAPI - FreeSWITCH Asks Webserver Next Action
	HTTAPI Rationale
	HTTAPI dialplan
	data
	httapi_profile
	url
	method

	HTTAPI document syntax
	Work actions
	playback
	record
	pause
	speak
	say
	execute
	sms
	dial
	recordCall
	conference
	hangup
	break
	log
	continue
	getVar
	voicemail
	vmname

	exiting (param)
	storing data across successive requests

	mod_httapi configuration file
	params
	gateway-url
	method

	permissions
	set-params
	set-vars
	get-vars
	extended-data
	extended-data longer than max CGI length

	execute-apps
	expand-vars
	dial
	dial-set-dialplan
	dial-set-context
	dial-set-cid-name
	dial-set-cid-number
	dial-full-originate

	conference
	conference-set-profile

	HTTPAPI libraries for PHP and Python
	The demo-ivr in PHP-HTTAPI
	Summary

	Conferencing and WebRTC Video-Conferencing
	Conferencing Concepts
	Conferencing Support in FreeSWITCH
	Audio conferencing
	Video conferencing

	Audio Conferencing setup in FreeSWITCH
	profiles
	rate
	caller-controls
	auto-record
	interval
	energy-level
	member-flags
	conference-flags
	tts-engine
	tts-voice
	pin
	max-members
	caller-id-name
	caller-id-number
	comfort-noise
	announce-count
	suppress-events
	sound-prefix
	sounds

	caller-controls
	advertise

	Video-WebRTC conferencing setup in FreeSWITCH
	profiles additional video parameters
	video-mode
	video-layout-name
	video-canvas-size
	video-no-video-avatar
	video-mute-banner

	caller-controls additional video actions
	member-flags additional video options
	conference-flags additional video options
	screen estate layouts
	layout groups

	FreeSWITCH conferencing operation
	Conference Application (dialplan)
	Controlling active conferences
	Calling outbound into the conference

	Verto Communicator and Video-WebRTC Conferencing
	settings
	participants list
	participant GUI commands and chat
	moderator GUI commands
	screen sharing

	Summary

	Handling NAT
	A brief introduction to NAT
	Understanding the evolution of NAT

	The four pitfalls of NAT
	Demystifying NAT settings in FreeSWITCH
	Making media flow
	Advanced options and settings
	FreeSWITCH behind NAT
	FreeSWITCH speaks to the router
	FreeSWITCH behind NAT, leaving the router alone
	Additional ways to set the external addresses

	Other creative uses of FreeSWITCH in a NAT situation
	NAT and WebRTC (SOLVED)
	Conclusion
	Summary

	VoIP Security
	Network level protection
	Separating interfaces and restricting traffic
	Sample setup - simple
	Sample setup - complex

	VLANs

	Intrusion detection
	Registration and call attempts monitoring
	Fail2Ban
	Filter configurations
	Jail configurations
	Do not lock the good guys out!

	Encryption in non-WebRTC SIP: Signaling and Media
	Choosing between encryption options
	Disabling SSLv3 and SSLv2

	Certificates
	"Real" certificates, from "real" CAs

	Protecting signaling
	Encryption with TLS

	Protecting media
	Encryption with SRTP
	Enabling SRTP
	Debugging SRTP

	Encryption with ZRTP
	Enabling ZRTP

	Testing media SIP encryption

	Protecting WebRTC SIP and VERTO Signaling and Media
	Protecting passwords
	Registration passwords as hashes
	Voicemail passwords

	Summary

	Troubleshooting, Asking for Help, and Reporting Bugs
	Troubleshooting FreeSWITCH
	firewall rules and network issues
	checking FreeSWITCH configuration and operation
	fsctl loglevel 7
	sofia global siptrace on
	verto debug=10
	sngrep: SIP dialogs visualization
	tcpdump for saving net traffic in pcap files

	Asking for Help
	Read the documentation first!
	confluence
	books
	mailing list archives
	google

	How to ask for Community Help
	IRC
	HipChat
	mailing lists

	Official Commercial Support and Consulting

	Reporting Problems
	don't report a bug on mailing list !
	how to file a bug on Jira

	ClueCon
	Summary

